Abstract

We demonstrate near-stoichiometric Ti:Sc:LiNbO3 strip waveguide fabrication starting from a congruent LiNbO3 substrate with a technological process in sequence of Sc3+-diffusion-doping, Ti diffusion, and post Li-rich vapor transport equilibration. We show that the waveguide is in a near-stoichiometric composition environment, well supports single-mode propagation at 1.5 μm wavelength under both TE and TM polarizations, shows considerable polarization dependence, and has a loss ≤ 0.4/0.7 dB/cm for TE/TM mode. The Ti4+ surface profile can be fitted by a sum of two error functions, the depth profile can be fitted by a Gaussian function, and the Sc3+-profile part which has a concentration above the threshold of photorefractive damage entirely covers the waveguide, showing that the waveguide is expected to be optical-damage-resistant.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer

De-Long Zhang, Pei Zhang, Hao-Jiang Zhou, and Edwin Yue-Bun Pun
J. Opt. Soc. Am. A 25(10) 2558-2570 (2008)

Optical damage resistant Ti-diffused Zr/Er-codoped lithium niobate strip waveguide for high-power 980 nm pumping

Wen-Bao Sun, Xiao-Fei Yang, Zi-Bo Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Express 25(8) 8653-8658 (2017)

Polarization-insensitive, shallow Ti-diffused near-stoichiometric LiTaO3 strip waveguide for integrated optics

Xiao-Fei Yang, Zi-Bo Zhang, Wan-Ying Du, Qun Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Lett. 41(11) 2513-2516 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  2. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15(18), 996–998 (1990).
    [Crossref] [PubMed]
  3. J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
    [Crossref]
  4. M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
    [Crossref]
  5. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  6. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
    [Crossref]
  7. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]
  8. Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
    [Crossref]
  9. G. Nava, P. Minzioni, W. B. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express 1(2), 270–277 (2011).
    [Crossref]
  10. L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
    [Crossref] [PubMed]
  11. D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
    [Crossref]
  12. D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
    [Crossref]
  13. D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
    [Crossref]
  14. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
    [Crossref] [PubMed]
  15. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
    [Crossref]
  16. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
    [Crossref]
  17. M. Fukuma and J. Noda, “Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics,” Appl. Opt. 19(4), 591–597 (1980).
    [Crossref] [PubMed]
  18. R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55(10), 3531–3535 (1984).
    [Crossref]
  19. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
    [Crossref]
  20. D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
    [Crossref]
  21. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
    [Crossref]
  22. D. L. Zhang, P. Zhang, H. J. Zhou, and E. Y. B. Pun, “Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer,” J. Opt. Soc. Am. A 25(10), 2558–2570 (2008).
    [Crossref] [PubMed]

2015 (2)

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

2014 (2)

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

2007 (1)

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

2005 (2)

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

2003 (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

1998 (2)

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

1996 (1)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

1992 (1)

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

1990 (1)

1988 (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

1984 (2)

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55(10), 3531–3535 (1984).
[Crossref]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

1980 (1)

Argiolas, N.

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Bazzan, M.

Betzler, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Chen, S.

Chen, S. L.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Ciampolillo, M. V.

Cristiani, I.

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Degiorgio, V.

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Fukuma, M.

Furukawa, Y.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Gather, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Grando, D.

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Holmes, R. J.

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55(10), 3531–3535 (1984).
[Crossref]

Huang, Z.

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Iyi, N.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Kang, J.

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

Kasemir, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Kimura, S.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kip, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Kitamura, K.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Kong, Y.

Kong, Y. F.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, H. D.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, S.

Liu, S. G.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, Y. W.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Matzas, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Minzioni, P.

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Musso, E.

Nakamura, M.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Nava, G.

Noda, J.

Parravicini, J.

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Pryalkin, V. I.

Pun, E. Y. B.

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

D. L. Zhang, P. Zhang, H. J. Zhou, and E. Y. B. Pun, “Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer,” J. Opt. Soc. Am. A 25(10), 2558–2570 (2008).
[Crossref] [PubMed]

Qiu, C. X.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Rubinina, N.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Rubinina, N. M.

Runde, D.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Rupp, R.

Sada, C.

Sato, M.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Shepherd, D. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Smyth, D. M.

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55(10), 3531–3535 (1984).
[Crossref]

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Takekawa, S.

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

Tiegel, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Tropper, A. C.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Volk, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Volk, T. R.

Wahlbrink, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Wang, L.

Wöhlecke, M.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wong, W. H.

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

Wu, L.

Xu, J.

Xu, J. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Yamamoto, J. K.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Yan, W. B.

Yu, D. Y.

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

Zaltron, A.

Zhang, D. L.

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

D. L. Zhang, P. Zhang, H. J. Zhou, and E. Y. B. Pun, “Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer,” J. Opt. Soc. Am. A 25(10), 2558–2570 (2008).
[Crossref] [PubMed]

Zhang, P.

Zhang, Q.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

Zhao, Y. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Zhou, H. J.

Zolotoyabko, E.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. L. Zhang, J. Kang, C. X. Qiu, Q. Zhang, W. H. Wong, and E. Y. B. Pun, “Refractive index in Ti:LiNbO3 fabricated by Ti diffusion and post-Li-rich VTE,” IEEE Photonics Technol. Lett. 27(10), 1132–1135 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Y. B. Pun, “Optical-damage-resistant Ti-diffused LiNbO3 strip waveguide doped with zirconium,” IEEE Photonics Technol. Lett. 26(17), 1770–1773 (2014).
[Crossref]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

J. Am. Ceram. Soc. (1)

D. L. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Diffusion properties of scandium in lithium niobate crystal,” J. Am. Ceram. Soc. 97(9), 2903–2908 (2014).
[Crossref]

J. Appl. Phys. (2)

R. J. Holmes and D. M. Smyth, “Titanium diffusion into LiNbO3 as a function of stoichiometry,” J. Appl. Phys. 55(10), 3531–3535 (1984).
[Crossref]

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

J. Cryst. Growth (1)

M. Nakamura, S. Takekawa, Y. W. Liu, and K. Kitamura, “Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics,” J. Cryst. Growth 281(2–4), 549–555 (2005).
[Crossref]

J. Lightwave Technol. (2)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

J. Mater. Sci. (1)

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, and E. Y. B. Pun, “Control of scandium diffusion in LiNbO3 single crystal by co-diffusion of titanium,” J. Mater. Sci. 50(12), 4149–4159 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Fabrication procedure, (b) image, and (c) near-field patterns of TE and TM modes at 1547 nm wavelength of 8-μm-wide NS Ti:Sc:LN strip waveguide.
Fig. 2
Fig. 2 TE- and TM-mode light intensity profiles along (a) x and (b) y directions of 8-μm-wide NS Ti:Sc:LN strip waveguide.
Fig. 3
Fig. 3 (a) Surface Ti4+ profile and (b) depth profiles of 6Li, 93Nb, 16O, 45Sc and 48Ti.

Metrics