Abstract

In this work, the third-order nonlinear optical properties and saturable absorbed performance of Cr4+-doped Gd3Ga5O12 (Cr4+:GGG) crystal were investigated. By using the Z-scan technique, the third-order nonlinear properties were analyzed systematically. Compared with Cr4+:YAG crystal, Cr4+:GGG crystal has a large third-order nonlinear refractive index, ground-state absorption, and excited-state absorption cross section. It has been successfully employed as a saturable absorber for passively Q-switched and Q-switching mode-locked lasers in this paper. In the Q-switched regime, the maximum average output power of 600 mW was obtained with the shortest pulse width of 4.76 ns and the repetition rate of 41.4 kHz, corresponding to single pulse energy and pulse peak power of 14.5 µJ and 3 kW, respectively. For the Q-switching mode-locking operation, the maximum output power of 468 mW was obtained with a repetition rate of 141.2 MHz. The results indicate that Cr4+:GGG crystal has the potential to be used for passive Q-switching and mode-locking laser generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive Q-switching laser performance of Yb:Gd3Ga5O12 garnet crystal

Wenjuan Han, Hongying Yi, Qibiao Dai, Kui Wu, Huaijin Zhang, Linhua Xia, and Junhai Liu
Appl. Opt. 52(18) 4329-4333 (2013)

Saturable absorber Cr4+:(Sr,Ca)Gd4(SiO4)3O crystals as Q switches for a diode-pumped Nd3+:KGd(WO4)2 laser

Igor A. Denisov, Konstantin V. Yumashev, Richard Moncorge, and Bernard Ferrand
Appl. Opt. 40(30) 5413-5416 (2001)

Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal

Xingyu Zhang, Alain Brenier, Qingpu Wang, Zhengping Wang, Jun Chang, Ping Li, Shaojun Zhang, Shuanghong Ding, and Shutao Li
Opt. Express 13(19) 7708-7719 (2005)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  2. A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
    [Crossref]
  3. J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
    [Crossref]
  4. K. Yang, S. Zhao, J. He, B. Zhang, C. Zuo, G. Li, D. Li, and M. Li, “Diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34 microm with V:YAG saturable absorber,” Opt. Express 16(25), 20176–20185 (2008).
    [Crossref] [PubMed]
  5. J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
    [Crossref]
  6. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  7. H. Zhang, J. He, Z. Wang, J. Hou, B. Zhang, R. Zhao, K. Han, K. Yang, H. Nie, and X. Sun, “Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber,” Opt. Mater. Express 6(7), 2328–2335 (2016).
    [Crossref]
  8. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
    [Crossref]
  9. Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
    [Crossref]
  10. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
    [Crossref]
  11. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [Crossref]
  12. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
    [Crossref]
  13. B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
    [Crossref]
  14. Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
    [Crossref]
  15. Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
    [Crossref]
  16. V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).
  17. G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
    [Crossref]
  18. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
    [Crossref] [PubMed]
  19. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  20. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
    [Crossref] [PubMed]
  21. Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
    [Crossref]
  22. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
    [Crossref]
  23. S. Wang, Y. Zhang, K. Wu, R. Zhang, H. Yu, H. Zhang, G. Zhang, and Q. Xiong, “Third-order nonlinearity and passive Q-switching of Cr4+:YGG garnet crystal,” Opt. Lett. 40(10), 2421–2424 (2015).
    [Crossref] [PubMed]
  24. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]

2016 (1)

2015 (1)

2012 (2)

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

2008 (1)

2006 (2)

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

2005 (1)

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

2004 (1)

Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

2003 (3)

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
[Crossref]

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2001 (2)

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
[Crossref]

1999 (1)

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

1998 (2)

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

1997 (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1996 (1)

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

1995 (2)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

1966 (1)

A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
[Crossref]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Ben-Amar Baranga, A.

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Bufetova, G. A.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Chen, J.

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

Chen, Y.

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

DeMaria, A.

A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
[Crossref]

Fan, X.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
[Crossref]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Gao, L.

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

Gao, W. L.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Gusev, M. Y.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, K.

He, J.

Heynau, H.

A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
[Crossref]

Hou, J.

Huber, G.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

Ivanov, I. A.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Kalisky, Y.

Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kikta, M.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Kikta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Kokta, M. R.

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Kravchik, L.

Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
[Crossref]

Kück, S.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

Labbe, C.

Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
[Crossref]

Li, D.

Li, G.

Li, M.

Lipavsky, B.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Liu, J.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

Lv, P.

Ma, J.

Ma, X.

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

Nie, H.

Nikolaev, D. A.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Petermann, K.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

Pollack, S. A.

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Qian, L. J.

Qu, Z.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Rotman, S.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Seregin, V. F.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Shcherbakov, I. A.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Stetser, D.

A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
[Crossref]

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Sun, X.

Tang, D. Y.

Tian, W.

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

Tsai, S.

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

Tsvetkov, V. B.

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Wang, J. Y.

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Wang, S.

S. Wang, Y. Zhang, K. Wu, R. Zhang, H. Yu, H. Zhang, G. Zhang, and Q. Xiong, “Third-order nonlinearity and passive Q-switching of Cr4+:YGG garnet crystal,” Opt. Lett. 40(10), 2421–2424 (2015).
[Crossref] [PubMed]

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

Wang, Y.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

Wang, Z.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wu, K.

Xie, G. Q.

Xiong, Q.

Yang, K.

Yu, H.

Yu, H. H.

Yuan, P.

Zhang, B.

Zhang, G.

Zhang, H.

Zhang, H. J.

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, R.

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, Y.

Zhao, R.

Zhao, S.

K. Yang, S. Zhao, J. He, B. Zhang, C. Zuo, G. Li, D. Li, and M. Li, “Diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34 microm with V:YAG saturable absorber,” Opt. Express 16(25), 20176–20185 (2008).
[Crossref] [PubMed]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zuo, C.

Appl. Phys. B (1)

Y. Chen, S. Tsai, S. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd: YVO4 laser with a LiF:F2- saturable absorber,” Appl. Phys. B 73(2), 115–118 (2001).
[Crossref]

Appl. Phys. Lett. (2)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8(7), 174–176 (1966).
[Crossref]

IEEE J. Quantum Electron. (4)

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Laser Phys. (1)

V. B. Tsvetkov, G. A. Bufetova, D. A. Nikolaev, V. F. Seregin, I. A. Shcherbakov, M. Y. Gusev, and I. A. Ivanov, “Cr4+:GGG epitaxial films for solid-state lasers,” Laser Phys. 15(4), 579–581 (2005).

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Kalisky, L. Kravchik, and C. Labbe, “Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser,” Opt. Commun. 189(1–3), 113–125 (2001).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (4)

Y. Kalisky, A. Ben-Amar Baranga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr4+ doped garnets: their properties as non-linear absorbers,” Opt. Mater. 6(4), 275–280 (1996).
[Crossref]

J. Liu, Y. Wang, W. Tian, L. Gao, J. He, and X. Ma, “Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber,” Opt. Mater. 28(8–9), 970–973 (2006).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–344 (2003).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (2)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B Condens. Matter 51(24), 17323–17331 (1995).
[Crossref] [PubMed]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron. 28(5), 249–303 (2004).
[Crossref]

Quantum Electron. (1)

G. A. Bufetova, M. Y. Gusev, I. A. Ivanov, D. A. Nikolaev, V. F. Seregin, V. B. Tsvetkov, and I. A. Shcherbakov, “Preparation and study of epitaxial Cr4+: GGG films for passive Q switches in neodymium lasers,” Quantum Electron. 36(7), 620–623 (2006).
[Crossref]

Quantum Electronics, IEEE J. Quantum Electron. (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” Quantum Electronics, IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Absorption spectrum of Cr4+:GGG crystal. The inset shows the detail information around 1 μm.
Fig. 2
Fig. 2 (a) Normalized transmittance curves of Z-scan and (b) energy transmission corrected for Fresnel reflection versus energy density.
Fig. 3
Fig. 3 (a) Output power versus absorbed pump power; (b) repetition rate and pulse width versus the absorbed pump power; (c)and (d) measured and simulated pulse profile and pulse train under absorbed pump power of 8.9 W.
Fig. 4
Fig. 4 (a) Experimental setup of the V-type cavity. (b) Temporal traces of QML laser pulses with scale of 100 ns/div and 10 ns/div.

Tables (1)

Tables Icon

Table 1 The parameters of the theoretical calcution.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T= m=0 [ q 0 ( z,0 ) ] m ( m+1 ) 3/2 ( mN ) q 0 ( z,0 )= β L eff I 0 ( 1+ z 2 / z 0 2 )
T=1+ 4k L eff γ I 0 x ( x 2 +9 )×( x 2 +1 )
T E out E in T 0 + T i T 0 1 T 0 ( T max T 0 )
T i = hv σ  gs E ¯ in ln{ 1+ T 0 [ exp( σ gs E ¯ in /hv )1 ] }
dϕ dx = ϕ t r [ 2σnl2 σ gs n s1 l s 2 σ es ( n s0 n s1 ) l s ln 1 R L ]
dn dt = R in cσϕn n τ
d n s1 dt =c σ gs ϕ n s1 + n s0 n s1 τ s

Metrics