Abstract

We report a newly synthesized blue fluorescent fluorinated 9,9'-spirobifluorene based host material Spiro-(3,5)-F and its application in organic light-emitting device. Spiro-(3,5)-F has a high thermal stability with the decomposition temperature of 395 °C and the glass transition temperature of 145 °C. An organic light-emitting device using Spiro-(3,5)-F as host and 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl as dopant material exhibits a low turn-on voltage of 3.5 V, a maximum current efficiency of 6.51 cd A−1, and a maximum external quantum efficiency of 3.85%, implying good energy transfer and device performances. Moreover, this device exhibited low efficiency roll-off at high luminance and stable blue emission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trifluoromethyl-substituted 9,9'-bianthracene derivative as host material for highly efficient blue OLED

Feng Gao, Jingkun Ren, Zhanfeng Li, Shuqing Yuan, Zhaoxin Wu, Yanxia Cui, Huayu Jia, Hua Wang, Fang Shi, and Yuying Hao
Opt. Mater. Express 5(11) 2468-2477 (2015)

Highly efficient blue emitting materials based on indenopyrazine derivatives for OLEDs [Invited]

Hayoon Lee, Young IL Park, Beomjin Kim, Ji-Hoon Lee, and Jongwook Park
Opt. Mater. Express 4(5) 924-933 (2014)

New asymmetrical limb structured blue emitting material for OLED [Invited]

Jang-Yeol Baek, Ye Rim Cheon, Hwan-gyu Shin, Jong-Wook Park, and Yun-Hi Kim
Opt. Mater. Express 4(6) 1151-1158 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Oraganic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  2. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
    [Crossref]
  3. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [Crossref] [PubMed]
  4. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
    [Crossref] [PubMed]
  5. J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
    [Crossref]
  6. W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
    [Crossref]
  7. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
    [Crossref]
  8. Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
    [Crossref]
  9. Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
    [Crossref]
  10. J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
    [Crossref]
  11. J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
    [Crossref]
  12. J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
    [Crossref]
  13. M. Zhu and C. Yang, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” Chem. Soc. Rev. 42(12), 4963–4976 (2013).
    [Crossref] [PubMed]
  14. X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
    [Crossref]
  15. Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
    [Crossref]
  16. Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
    [Crossref]
  17. J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
    [Crossref]
  18. S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
    [Crossref]
  19. C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
    [Crossref] [PubMed]
  20. A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
    [Crossref]
  21. M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
    [Crossref]
  22. Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
    [Crossref] [PubMed]
  23. R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
    [Crossref]
  24. M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
    [Crossref] [PubMed]
  25. S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
    [Crossref]
  26. J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
    [Crossref]
  27. K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
    [Crossref]
  28. L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
    [Crossref] [PubMed]
  29. S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
    [Crossref]
  30. J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
    [Crossref] [PubMed]
  31. M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
    [Crossref] [PubMed]
  32. Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
    [Crossref]
  33. N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
    [Crossref] [PubMed]
  34. Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
    [Crossref] [PubMed]
  35. P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
    [Crossref]
  36. J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
    [Crossref]

2015 (9)

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
[Crossref]

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
[Crossref]

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

2014 (6)

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

2013 (6)

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

M. Zhu and C. Yang, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” Chem. Soc. Rev. 42(12), 4963–4976 (2013).
[Crossref] [PubMed]

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

2012 (3)

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
[Crossref]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

2011 (2)

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

2010 (1)

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

2007 (2)

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

2006 (1)

R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
[Crossref]

2004 (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

2003 (1)

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

2002 (2)

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[Crossref]

1989 (1)

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
[Crossref]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Oraganic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Adachi, C.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Agrawal, A.

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

Bergamini, J.-F.

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Bryce, M. R.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Cai, P.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Cao, X.

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Cao, X. Y.

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

Cao, Y.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Cha, J. R.

J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
[Crossref]

Chen, C. H.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[Crossref]

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
[Crossref]

Chen, D.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Chen, R. T.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Chen, W. C.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Chen, W. J.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

Chen, Y. M.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Chien, C. H.

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Chien, Y. Y.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Chuang, C. Y.

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Cocherel, N.

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Cui, L. S.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Cui, Y.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Declairieux, C.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

Deng, Y. L.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Diau, E. W. G.

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Dong, Y.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Fang, P. H.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Fisher, A. L.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Forrest, S. R.

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

Fuhrmann-Lieker, T.

R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
[Crossref]

Geffroy, B.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Gong, M. S.

J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
[Crossref]

Goushi, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Hao, Y.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Hou, X.

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Hu, H.

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Hu, J. Y.

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Huang, H.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Huang, J.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
[Crossref]

Hung, L. S.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[Crossref]

Hung, W. Y.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Jeannin, O.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Jeon, S. O.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Jia, H.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Jiang, Z. Q.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Jiao, B.

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Jou, J. H.

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Kamtekar, K. T.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Kang, S.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Katagiri, H.

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Kawata, S.

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Kido, J.

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Kim, S. O.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Kumar, S.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

Lai, Y. H.

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

Lee, C. W.

J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
[Crossref]

Lee, C.-S.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Lee, J. Y.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Lee, K. H.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Lei, X.

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Li, C. G.

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Li, L.

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Li, Q.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Li, T. H.

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Li, X.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Li, Y.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Li, Z.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Liao, L. S.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Liao, Y. L.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

Lien, A.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Lin, C. Y.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

Lin, Y. T.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Linton, K. E.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Liu, P.

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Liu, T. L.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Liu, W.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Liu, X. Y.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Liu, Y. H.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

Lo, C. C.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Lu, P.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Lv, X.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Ma, D.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Ma, L.

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Métivier, R.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Métivierb, R.

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

Ni, J.

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

Nomura, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Pearson, C.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Pei, J.

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

Peng, J.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Petty, M. C.

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Poriel, C.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Pu, Y. J.

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Pudzich, R.

R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
[Crossref]

Qin, J.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Rault-Berthelot, J.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Romain, M.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Sahoo, S.

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

Salbeck, J.

R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
[Crossref]

Sasabe, H.

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Satoh, F.

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Seino, Y.

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

Seo, G.

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

Shangguan, R.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Shi, F.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Shih, P. I.

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Shirinskaya, A.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

Shizu, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Shu, C. F.

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Shyue, J. J.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Si, C.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

So, S. K.

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Su, J.

J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
[Crossref]

Su, S. J.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Sun, N.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Tang, C. W.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
[Crossref]

C. W. Tang and S. A. VanSlyke, “Oraganic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tang, L.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Tang, R.

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

Thiery, S.

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

Thomas, K. J.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Tian, H.

J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
[Crossref]

Tondelier, D.

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Tong, Q. X.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Tu, G.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Uoyama, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Vanel, J. C.

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

VanSlyke, S. A.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
[Crossref]

C. W. Tang and S. A. VanSlyke, “Oraganic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Venkateswararao, A.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Vignau, L.

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Wang, D.

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Wang, H.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Wang, L.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Wang, Y. C.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Wang, Y. F.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Wang, Y. K.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Wang, Z.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Wei, H. X.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Wong, F.-L.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Wong, K. T.

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Wu, C. C.

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

Wu, G. F.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Wu, Z.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Xie, G.

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

Xie, Y. M.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Xu, X.

X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
[Crossref]

Yamashita, Y.

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Yang, C.

M. Zhu and C. Yang, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” Chem. Soc. Rev. 42(12), 4963–4976 (2013).
[Crossref] [PubMed]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Yang, X.

X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
[Crossref]

Ye, T.

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Yook, K. S.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Yoon, S. S.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

You, J. N.

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

Yu, H. H.

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Yu, J.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Yu, W.

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Yu, Y.

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Yuan, Y.

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Zhong, C.

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Zhou, G.

X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

Zhou, X. H.

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

Zhu, M.

M. Zhu and C. Yang, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” Chem. Soc. Rev. 42(12), 4963–4976 (2013).
[Crossref] [PubMed]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Zhu, X.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Zhuang, S.

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

Adv Optical Mater. (1)

W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F.-L. Wong, and C.-S. Lee, “Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility,” Adv Optical Mater. 2(7), 631–663 (2014).
[Crossref]

Adv. Funct. Mater. (3)

J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Bisanthracene-based-donor-acceptor type light emitting dopants: highly efficient deep-blue emission in organic light-emitting devices,” Adv. Funct. Mater. 24(14), 2064–2071 (2014).
[Crossref]

J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma, J. Qin, and Z. Li, “Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs,” Adv. Funct. Mater. 23(18), 2329–2337 (2013).
[Crossref]

P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, and C. F. Shu, “Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups,” Adv. Funct. Mater. 17(16), 3141–3146 (2007).
[Crossref]

Adv. Mater. (2)

Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, “High-performance blue phosphorescent OLEDs using energy transfer from exciplex,” Adv. Mater. 26(10), 1612–1616 (2014).
[Crossref] [PubMed]

L. S. Cui, Y. M. Xie, Y. K. Wang, C. Zhong, Y. L. Deng, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, “Pure hydrocarbon hosts for ≈100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices,” Adv. Mater. 27(28), 4213–4217 (2015).
[Crossref] [PubMed]

Adv. Polym. Sci. (1)

R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck, “Spiro compounds for organic electroluminescence and related applications,” Adv. Polym. Sci. 199, 83–142 (2006).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

M. Romain, S. Thiery, A. Shirinskaya, C. Declairieux, D. Tondelier, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “ortho-, meta-, and para-dihydroindenofluorene derivatives as host materials for phosphorescent OLEDs,” Angew. Chem. Int. Ed. Engl. 54(4), 1176–1180 (2015).
[Crossref] [PubMed]

M. Romain, D. Tondelier, J. C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, and C. Poriel, “Dependence of the properties of dihydroindenofluorene derivatives on positional isomerism: influence of the ring bridging,” Angew. Chem. Int. Ed. Engl. 52(52), 14147–14151 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. W. Tang and S. A. VanSlyke, “Oraganic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Chem. Commun. (Camb.) (1)

Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung, and W. J. Chen, “An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities,” Chem. Commun. (Camb.) 18(18), 1831–1833 (2007).
[Crossref] [PubMed]

Chem. Mater. (2)

Y. Li, Z. Wang, X. Li, G. Xie, D. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. Peng, Y. Cao, and S. J. Su, “Highly efficient spiro [fluorene-9,9′ thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes,” Chem. Mater. 27(3), 1100–1109 (2015).
[Crossref]

A. L. Fisher, K. E. Linton, K. T. Kamtekar, C. Pearson, M. R. Bryce, and M. C. Petty, “Efficient deep-blue electroluminescence from an ambipolar fluorescent emitter in a single-active-layer device,” Chem. Mater. 23(7), 1640–1642 (2011).
[Crossref]

Chem. Soc. Rev. (1)

M. Zhu and C. Yang, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” Chem. Soc. Rev. 42(12), 4963–4976 (2013).
[Crossref] [PubMed]

Dyes Pigments (3)

Z. Li, W. Liu, Y. Yu, X. Lv, C. Si, Z. Wu, Y. Cui, H. Jia, J. Yu, H. Wang, F. Shi, and Y. Hao, “Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states,” Dyes Pigments 122, 238–245 (2015).
[Crossref]

S. Zhuang, R. Shangguan, H. Huang, G. Tu, L. Wang, and X. Zhu, “Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety,” Dyes Pigments 101(2), 93–102 (2014).
[Crossref]

J. R. Cha, C. W. Lee, and M. S. Gong, “All fused ring spiro host and dopant materials for efficient blue fluorescent organic light-emitting diodes,” Dyes Pigments 120, 251–257 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, and Y. Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s,” J. Am. Chem. Soc. 125(13), 3710–3711 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65(9), 3610–3616 (1989).
[Crossref]

J. Mater. Chem. (2)

J. Huang, J. Su, and H. Tian, “The development of anthracene derivatives for organic light-emitting diodes,” J. Mater. Chem. 22(22), 10977–10989 (2012).
[Crossref]

K. H. Lee, S. O. Kim, J. N. You, S. Kang, J. Y. Lee, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, “Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes,” J. Mater. Chem. 22(11), 5145–5154 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (8)

S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivierb, and C. Poriel, “9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4156–4166 (2014).
[Crossref]

J. Y. Hu, Y. J. Pu, Y. Yamashita, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, and J. Kido, “Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3871–3878 (2013).
[Crossref]

Y. Yu, B. Jiao, Z. Wu, Z. Li, L. Ma, G. Zhou, W. Yu, S. K. So, and X. Hou, “Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(44), 9375–9384 (2014).
[Crossref]

X. Yang, X. Xu, and G. Zhou, “Recent advances of the emitters for high performance deep-blue organic light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 913–944 (2015).
[Crossref]

J. H. Jou, S. Kumar, P. H. Fang, A. Venkateswararao, K. J. Thomas, J. J. Shyue, Y. C. Wang, T. H. Li, and H. H. Yu, “Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2182–2194 (2015).
[Crossref]

Z. Li, B. Jiao, Z. Wu, P. Liu, L. Ma, X. Lei, D. Wang, G. Zhou, H. Hu, and X. Hou, “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(11), 2183–2192 (2013).
[Crossref]

Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, and X. Hou, “Highly efficient deep-blue organic electroluminescent devices (CIEy ≈ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores),” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8117–8127 (2013).
[Crossref]

J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, and S. Sahoo, “Approaches for fabricating high efficiency organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 2974–3002 (2015).
[Crossref]

J. Org. Chem. (1)

J. Pei, J. Ni, X. H. Zhou, X. Y. Cao, and Y. H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9′-spirobifluorene derivatives. 1. Synthesis,” J. Org. Chem. 67(14), 4924–4936 (2002).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

S. Thiery, D. Tondelier, C. Declairieux, B. Geffroy, O. Jeannin, R. Métivier, J. Rault-Berthelot, and C. Poriel, “4-Pyridyl-9, 9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs,” J. Phys. Chem. C 119(11), 5790–5805 (2015).
[Crossref]

M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, and C. Yang, “Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties,” J. Phys. Chem. C 115(36), 17965–17972 (2011).
[Crossref]

Mater. Sci. Eng. Rep. (1)

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[Crossref]

Nature (2)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Org. Lett. (1)

N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, and J. Rault-Berthelot, “DiSpiroXanthene-IndenoFluorene: A New Blue Emitter For Nondoped Organic Light Emitting Diode Applications,” Org. Lett. 12(3), 452–455 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Synthesis of Spiro-(3,5)-F.
Fig. 2
Fig. 2 The optimized geometries and the molecular orbital surfaces of the HOMO and LUMO for Spiro-(3,5)-F obtained at the B3LYP/6-31G(d,p) level.
Fig. 3
Fig. 3 TGA and DSC (inset) curves of Spiro-(3,5)-F.
Fig. 4
Fig. 4 (a) Absorption and PL spectra of Spiro-(3,5)-F in solution and solid state, (b) Absorption spectra of BCzVBi and PL spectra of Spiro-(3,5)-F.
Fig. 5
Fig. 5 Trace of cyclic voltammetric measurement of Spiro-(3,5)-F.
Fig. 6
Fig. 6 Energy diagram and molecular structures of the organic materials used in the devices.
Fig. 7
Fig. 7 (a) Current density-voltage curves, (b) Brightness-voltage curves, (c) Current efficiency-current density curves, and (d) Power efficiency-current density curves.
Fig. 8
Fig. 8 (a) Normalized EL spectra of BCzVBi-doped device using Spiro-(3,5)-F recorded at various driving voltages, and (b) External quantum efficiency-current density curves for Spiro-(3,5)-F devices.
Fig. 9
Fig. 9 CIE coordinates of EL spectra in response to the driving voltage of BCzVBi-doped device from 4 V to 9 V.

Metrics