Abstract

We investigate the origin of the ultraviolet - visible plasmonic properties of three elemental materials from the p-block: Bi, Sb and Ga, which has not been discussed so far despite growing interest in these materials for plasmonic applications. We review and analyze a broad range of optically-determined dielectric functions ε = ε1 + jε2 of these elemental materials available in the literature, covering a wide photon energy range (from 0.03 to 24 eV). It is shown that the contribution of free carriers to ε1 in the ultraviolet - visible is negligible for Bi and Sb and small for Ga. In contrast, the interband transitions of these elemental materials show a high oscillator strength that yields a strong negative contribution to ε1 in the ultraviolet - visible. Therefore it is proposed that, in nanostructures made of these elemental materials, the interband transitions induce localized surface plasmon-like resonances in the ultraviolet - visible. It is exemplified how these resonances are sensitive to the size and environment of the nanostructures. Furthermore, ultraviolet - visible plasmonic properties achieved through interband transitions, without free carrier excitation, are especially appealing because they might be tuned through the tailoring of the band structure and by the occupancy of electronic states. Therefore they are promising for the development of broadly tunable nanostructures and metamaterials.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

27 July 2016: A correction was made to the abstract.


OSA Recommended Articles
Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors

Arash Ahmadivand, Raju Sinha, Phani Kiran Vabbina, Mustafa Karabiyik, Serkan Kaya, and Nezih Pala
Opt. Express 24(12) 13665-13678 (2016)

Interband photorefraction in Sn2P2S6 at visible wavelengths

Roger Mosimann, Daniel Haertle, Mojca Jazbinsek, Germano Montemezzani, and Peter Günter
J. Opt. Soc. Am. B 23(8) 1620-1625 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
    [Crossref] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
    [Crossref]
  4. S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  5. U. Kreibig and M. Volmer, Optical Properties of Metal Clusters (Springer,1995).
  6. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
    [Crossref]
  7. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  8. R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  9. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  10. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
    [Crossref] [PubMed]
  11. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
    [Crossref] [PubMed]
  12. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  13. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
    [Crossref] [PubMed]
  14. M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
    [Crossref]
  15. Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
    [Crossref]
  16. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
    [Crossref]
  17. G. V. Naik, J. L. Schroeder, X. No, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  18. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
    [Crossref] [PubMed]
  19. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  20. A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
    [Crossref]
  21. M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
    [Crossref]
  22. L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
    [Crossref]
  23. M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
    [Crossref] [PubMed]
  24. S. Núñez-Sánchez, M. López-García, M. M. Murshidy, A. G. Abdel-Hady, M. Y. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Evidence of excitonic optical Tamm states using molecular materials,” arXiv preprint arXiv:1510.01105 (2015).
  25. G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” QELS2011, QThC3 (2011).
    [Crossref]
  26. J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
    [Crossref] [PubMed]
  27. M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).
  28. F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
    [Crossref]
  29. J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [Crossref]
  30. J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
    [Crossref] [PubMed]
  31. B. Bartning, “Bestimmung der optischen konstanten von Sb zwischen 2 und 25 eV aus energieverlustmessungen mit elektronen und die dispersion des volumenplasmons in Sb,” Opt. Commun. 4(6), 404–407 (1972).
    [Crossref]
  32. M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
    [Crossref] [PubMed]
  33. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
    [Crossref]
  34. B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
    [Crossref] [PubMed]
  35. N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
    [Crossref]
  36. X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
    [Crossref] [PubMed]
  37. M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
    [Crossref] [PubMed]
  38. O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F Met. Phys. 5(11), 2214–2225 (1975).
    [Crossref]
  39. J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
    [Crossref]
  40. J. H. Wood, “Gallium energy bands and Fermi surface via augmented-plane-wave method,” Phys. Rev. 146(2), 432–441 (1966).
    [Crossref]
  41. L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
    [Crossref] [PubMed]
  42. T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
    [Crossref]
  43. A. P. Lenham, “The optical properties of gallium,” Proc. Phys. Soc. 82(6), 933–937 (1963).
    [Crossref]
  44. D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
    [Crossref]
  45. A. P. Lenham, D. M. Treherne, and R. J. Metcalfe, “Optical properties of antimony and bismuth crystals,” J. Opt. Soc. Am. 55(9), 1072 (1965).
    [Crossref]
  46. R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
    [Crossref] [PubMed]
  47. J. Hodgson, “The infra-red properties of bismuth,” Proc. Phys. Soc. B 67(3), 269–270 (1954).
    [Crossref]
  48. M. N. Markov and I. S. Lindstrem, “Optical properties of sublimed bismuth in the 3-15 microns spectral range,” Opt. Spectrosc. 7, 228 (1959).
  49. L. Harris and J. Pipper, “Optical and electrical properties of bismuth deposits,” J. Opt. Soc. Am. 53(11), 1271–1275 (1963).
    [Crossref]
  50. J. Toots and L. Marton, “Optical Properties of Antimony and Bismuth in the far ultraviolet,” J. Opt. Soc. Am. 59(10), 1305–1308 (1969).
    [Crossref]
  51. L. Harris and F. Corrigan, “Optical and electrical properties of antimony deposits,” J. Opt. Soc. Am. 54(12), 1437 (1964).
    [Crossref]
  52. A. P. Lenham and D. M. Treherne, “Optical constants of single crystals of Mg, Zn, Cd, Al, Ga, In, and white Sn,” J. Opt. Soc. Am. 56(6), 752 (1966).
    [Crossref]
  53. R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
    [Crossref]
  54. O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
    [Crossref]
  55. J. Bor and C. Bartholomew, “The optical properties of indium, gallium and thallium,” Proc. Phys. Soc. 90(4), 1153–1157 (1967).
    [Crossref]
  56. G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
    [Crossref]
  57. J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
    [Crossref]
  58. F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Z. Phys. B 34(2), 123–128 (1979).
    [Crossref]
  59. http://lucien.saviot.free.fr/mie/index.en.html
  60. C. F. Bohren and D. F. Huffman, “Absorption and scattering of light by small particles,” Wiley-VCH (1998).
  61. Y. Tian, L. Jiang, Y. Deng, S. Deng, G. Zhang, and X. Zhang, “Bi-nanorod/Si-nanodot hybrid structure: surface dewetting induced growth and its tunable surface plasmon resonance,” Opt. Mater. Express 5(11), 2655–2666 (2015).
    [Crossref]
  62. J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).
  63. X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
    [Crossref]
  64. M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
    [Crossref]
  65. M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
    [Crossref]
  66. M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
    [Crossref]
  67. M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
    [Crossref]
  68. Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
    [Crossref]
  69. N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
    [Crossref]
  70. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
    [Crossref] [PubMed]
  71. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [Crossref] [PubMed]
  72. Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
    [Crossref]
  73. F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
    [Crossref] [PubMed]
  74. M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29–38 (2016).
    [Crossref]
  75. G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
    [Crossref]
  76. M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV-VI and group V materials,” Phys. Rev. 133(6A), A1685–A1697 (1964).
    [Crossref]
  77. J. W. Allen and J. C. Mikkelsen, “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15(6), 2952–2960 (1977).
    [Crossref]
  78. K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
    [Crossref] [PubMed]
  79. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
    [Crossref]
  80. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  81. J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
    [Crossref] [PubMed]

2016 (2)

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29–38 (2016).
[Crossref]

2015 (9)

K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
[Crossref] [PubMed]

Y. Tian, L. Jiang, Y. Deng, S. Deng, G. Zhang, and X. Zhang, “Bi-nanorod/Si-nanodot hybrid structure: surface dewetting induced growth and its tunable surface plasmon resonance,” Opt. Mater. Express 5(11), 2655–2666 (2015).
[Crossref]

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref] [PubMed]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

2014 (10)

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
[Crossref]

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

2013 (5)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

2012 (4)

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. No, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

2011 (3)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

2010 (4)

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

2009 (1)

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

2008 (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

2007 (1)

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

2006 (1)

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

2005 (1)

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

2003 (1)

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

2002 (4)

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
[Crossref]

2001 (1)

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

2000 (2)

X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

1995 (1)

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
[Crossref] [PubMed]

1991 (1)

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

1987 (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

1986 (1)

L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
[Crossref] [PubMed]

1979 (2)

A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
[Crossref]

F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Z. Phys. B 34(2), 123–128 (1979).
[Crossref]

1977 (3)

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
[Crossref]

J. W. Allen and J. C. Mikkelsen, “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15(6), 2952–2960 (1977).
[Crossref]

1975 (1)

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F Met. Phys. 5(11), 2214–2225 (1975).
[Crossref]

1974 (2)

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

1973 (1)

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

1972 (1)

B. Bartning, “Bestimmung der optischen konstanten von Sb zwischen 2 und 25 eV aus energieverlustmessungen mit elektronen und die dispersion des volumenplasmons in Sb,” Opt. Commun. 4(6), 404–407 (1972).
[Crossref]

1969 (1)

1967 (1)

J. Bor and C. Bartholomew, “The optical properties of indium, gallium and thallium,” Proc. Phys. Soc. 90(4), 1153–1157 (1967).
[Crossref]

1966 (2)

A. P. Lenham and D. M. Treherne, “Optical constants of single crystals of Mg, Zn, Cd, Al, Ga, In, and white Sn,” J. Opt. Soc. Am. 56(6), 752 (1966).
[Crossref]

J. H. Wood, “Gallium energy bands and Fermi surface via augmented-plane-wave method,” Phys. Rev. 146(2), 432–441 (1966).
[Crossref]

1965 (1)

1964 (2)

L. Harris and F. Corrigan, “Optical and electrical properties of antimony deposits,” J. Opt. Soc. Am. 54(12), 1437 (1964).
[Crossref]

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV-VI and group V materials,” Phys. Rev. 133(6A), A1685–A1697 (1964).
[Crossref]

1963 (2)

1959 (1)

M. N. Markov and I. S. Lindstrem, “Optical properties of sublimed bismuth in the 3-15 microns spectral range,” Opt. Spectrosc. 7, 228 (1959).

1954 (1)

J. Hodgson, “The infra-red properties of bismuth,” Proc. Phys. Soc. B 67(3), 269–270 (1954).
[Crossref]

Adamo, G.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Alcaraz de la Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Allen, J. W.

J. W. Allen and J. C. Mikkelsen, “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15(6), 2952–2960 (1977).
[Crossref]

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Anghinolfi, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Armitage, N. P.

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Avrutsky, I.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Barnes, W. L.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Bartholomew, C.

J. Bor and C. Bartholomew, “The optical properties of indium, gallium and thallium,” Proc. Phys. Soc. 90(4), 1153–1157 (1967).
[Crossref]

Bartning, B.

B. Bartning, “Bestimmung der optischen konstanten von Sb zwischen 2 und 25 eV aus energieverlustmessungen mit elektronen und die dispersion des volumenplasmons in Sb,” Opt. Commun. 4(6), 404–407 (1972).
[Crossref]

Bernasconi, M.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
[Crossref] [PubMed]

Bisio, F.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Black, M. R.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Boltasseva, A.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. No, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bor, J.

J. Bor and C. Bartholomew, “The optical properties of indium, gallium and thallium,” Proc. Phys. Soc. 90(4), 1153–1157 (1967).
[Crossref]

Boreman, G. D.

Brenny, B. J. M.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Brillante, A.

A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
[Crossref]

Brown, A. S.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Buchwald, W. R.

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Cabello, F.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

Caldwell, J. D.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Canepa, M.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Cardona, M.

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV-VI and group V materials,” Phys. Rev. 133(6A), A1685–A1697 (1964).
[Crossref]

Castillo-Blum, S. E.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Cheyssac, P.

R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
[Crossref]

Chiarotti, G. L.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
[Crossref] [PubMed]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

Claessen, L. M.

L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
[Crossref] [PubMed]

Cleary, J. W.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
[Crossref] [PubMed]

Coenen, T.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Corrigan, F.

Cronin, S. B.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Dai, H. L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

de Zuani, S.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Deng, S.

Deng, Y.

Díaz, D.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Dong, F.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Dresselhaus, G.

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Dresselhaus, M. S.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Emani, N. K.

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Emmony, D. C.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Esslinger, M.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Everitt, H. O.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Fedotov, V. A.

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Feng, X.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Fox, T. J.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Gajc, M.

Garcia, G.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Gehring, P.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gentile, M. J.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Giannini, E.

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Giglia, A.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gompf, B.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gonella, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gong, X. G.

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

González, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Gray, S. K.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Greenaway, D. L.

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV-VI and group V materials,” Phys. Rev. 133(6A), A1685–A1697 (1964).
[Crossref]

Greuter, F.

F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Z. Phys. B 34(2), 123–128 (1979).
[Crossref]

Gronsky, R.

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

Gu, L.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

Hagelstein, P. L.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Haro-Poniatowski, E.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

Harris, L.

Hodgson, J.

J. Hodgson, “The infra-red properties of bismuth,” Proc. Phys. Soc. B 67(3), 269–270 (1954).
[Crossref]

Honda, M.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Howson, R. P.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Huang, R.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Hunderi, O.

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F Met. Phys. 5(11), 2214–2225 (1975).
[Crossref]

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

Ishii, S.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitride system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express 6(1), 29–38 (2016).
[Crossref]

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Jansen, A. G. M.

L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
[Crossref] [PubMed]

Jezequel, G.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

Jiang, C.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Jiang, L.

Jiang, N.

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Jiménez de Castro, M.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Käll, M.

M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
[Crossref]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kawata, S.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Kern, K.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Khalilzadeh-Rezaie, F.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Khunsin, W.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Kildishev, A. V.

Kim, G. H.

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Kim, J.

J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).

Kim, J. S.

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Kim, K. S.

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Kitur, J. K.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

Knight, M. W.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Kofman, R.

R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
[Crossref]

Korzeb, K.

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Kumamoto, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Kumar, M.

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Lee, W.

J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).

Lemonnier, J. C.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lenham, A. P.

Lin, X. M.

X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[Crossref]

Lin, Y. M.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Lindstrem, I. S.

M. N. Markov and I. S. Lindstrem, “Optical properties of sublimed bismuth in the 3-15 microns spectral range,” Opt. Spectrosc. 7, 228 (1959).

Livenere, J.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Losurdo, M.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Maidecchi, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Markov, M. N.

M. N. Markov and I. S. Lindstrem, “Optical properties of sublimed bismuth in the 3-15 microns spectral range,” Opt. Spectrosc. 7, 228 (1959).

Marton, L.

Mattera, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Maukonen, D.

McClure, T.

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

McMahon, J. M.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Medhi, G.

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Metcalfe, R. J.

Mikkelsen, J. C.

J. W. Allen and J. C. Mikkelsen, “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15(6), 2952–2960 (1977).
[Crossref]

Milliron, D. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Moreno, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Moroni, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref] [PubMed]

M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
[Crossref]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Nader, N.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Nagao, T.

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. No, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nannarone, S.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Narimanov, E. E.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

Nath, J.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

No, X.

Noginov, M. A.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

Núñez-Sánchez, S.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Oelhafen, P.

F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Z. Phys. B 34(2), 123–128 (1979).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Ou, J. Y.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Padi, M.

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Parrinello, M.

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Pawlak, D. A.

Peale, R. E.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
[Crossref] [PubMed]

Peng, H.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Philpott, M. R.

A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
[Crossref]

Pipper, J.

Pockrand, I.

A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
[Crossref]

Polman, A.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Proietti Zaccaria, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Qiu, J.

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Rabin, O.

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Rendón, L.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Rezadad, I.

Richard, J.

R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
[Crossref]

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Robin, S.

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Ross, M. B.

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

Ruiz-Ruiz, V. F.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

Ryberg, R.

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

Saito, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Sander, M. S.

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

Sands, T. D.

Santiago-Jacinto, P.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Sanz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Schatz, G. C.

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

Schroeder, J. L.

Serna, R.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Shahzad, M.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shim, W.

J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Smith, C. W.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

So, J. K.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Soares, B. F.

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Spence, J. C. H.

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Srnová-Sloufová, I.

M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
[Crossref]

Su, D.

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Sulaev, A.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Sun, X.

X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[Crossref]

Sun, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Svedendahl, M.

M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
[Crossref]

Taguchi, A.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Talebi, N.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Tang, X.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Tediosi, R.

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

Thomas, J.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Tian, Y.

Toots, J.

Tosatti, E.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
[Crossref] [PubMed]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

Toudert, J.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Treherne, D. M.

Umezawa, N.

Urbas, A.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

van der Marel, D.

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

Velasco-Arias, D.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Vella, J.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

Verre, R.

M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
[Crossref]

Vlcková, B.

M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
[Crossref]

Vogelgesang, R.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Wang, L.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Wang, Y. W.

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

Wang, Z.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Watanabe, K.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Wentzell, S.

West, R. P.

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wood, J. H.

J. H. Wood, “Gallium energy bands and Fermi surface via augmented-plane-wave method,” Phys. Rev. 146(2), 432–441 (1966).
[Crossref]

Wu, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wyder, P.

L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
[Crossref] [PubMed]

Xiong, T.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Yang, Y.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

Zhang, G.

Zhang, X.

Zhao, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

Zhou, S.

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Zhou, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zhu, G.

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zumeta-Dubé, I.

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

ACS Nano (3)

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

ACS Photonics (3)

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

G. Zhu, J. K. Kitur, L. Gu, J. Vella, A. Urbas, E. E. Narimanov, and M. A. Noginov, “Gigantic optical non-linearity; laser-induced change of dielectric permittivity of the order of unity,” ACS Photonics 2(5), 622–627 (2015).
[Crossref]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to the visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
[Crossref]

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices,” Appl. Phys. Lett. 105(113102), 1–5 (2014).

Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, “Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy,” Appl. Phys. Lett. 88(14), 143106 (2006).
[Crossref]

M. R. Black, M. Padi, S. B. Cronin, Y. M. Lin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, “Intersubband transitions in bismuth nanowires,” Appl. Phys. Lett. 77(25), 4142–4144 (2000).
[Crossref]

Chem. Commun. (Camb.) (1)

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Contemp. Phys. (1)

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

J. Appl. Phys. (1)

M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon excitation modes in nanowires arrays,” J. Appl. Phys. 89(5), 2733 (2001).
[Crossref]

J. Chem. Phys. (2)

A. Brillante, M. R. Philpott, and I. Pockrand, “Experimental and theoretical study of exciton surface polaritons on organic crystals. I. (010) face of TCNQ° single crystals,” J. Chem. Phys. 70(12), 5739 (1979).
[Crossref]

M. Moskovits, I. Srnová-Sloufová, and B. Vlcková, “Bimetallic Ag-Au nanoparticles: extracting meaningful optical constatns from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435 (2002).
[Crossref]

J. Mater. Chem. (1)

J. Kim, W. Shim, and W. Lee, “Bismuth nanowire thermoelectrics,” J. Mater. Chem. 3, 11999–12013 (2015).

J. Nanophotonics (1)

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. Opt. Soc. Am. (5)

J. Phys. C Solid State Phys. (1)

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structures of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

J. Phys. Chem. (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

J. Phys. Chem. C (5)

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. F. Ruiz-Ruiz, S. E. Castillo-Blum, and L. Rendón, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116(27), 14717–14727 (2012).
[Crossref]

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

J. Phys. F Met. Phys. (3)

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F Met. Phys. 5(11), 2214–2225 (1975).
[Crossref]

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

Laser Photonics Rev. (2)

R. P. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

Light Sci. Appl. (1)

M. Svedendahl, R. Verre, and M. Käll, “Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers,” Light Sci. Appl. 3(11), e220 (2014).
[Crossref]

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Nano Lett. (3)

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals,” Nano Lett. 11(10), 4415–4420 (2011).
[Crossref] [PubMed]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nanotechnol. Rev. (1)

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

Nat. Commun. (1)

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Nat. Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Bartning, “Bestimmung der optischen konstanten von Sb zwischen 2 und 25 eV aus energieverlustmessungen mit elektronen und die dispersion des volumenplasmons in Sb,” Opt. Commun. 4(6), 404–407 (1972).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (3)

Opt. Spectrosc. (1)

M. N. Markov and I. S. Lindstrem, “Optical properties of sublimed bismuth in the 3-15 microns spectral range,” Opt. Spectrosc. 7, 228 (1959).

Phys. Chem. Chem. Phys. (1)

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Phys. Rev. (2)

J. H. Wood, “Gallium energy bands and Fermi surface via augmented-plane-wave method,” Phys. Rev. 146(2), 432–441 (1966).
[Crossref]

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV-VI and group V materials,” Phys. Rev. 133(6A), A1685–A1697 (1964).
[Crossref]

Phys. Rev. B (5)

J. W. Allen and J. C. Mikkelsen, “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15(6), 2952–2960 (1977).
[Crossref]

R. Kofman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3-5 eV range,” Phys. Rev. B 16(12), 5216–5224 (1977).
[Crossref]

X. M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

Phys. Rev. B Condens. Matter (3)

L. M. Claessen, A. G. M. Jansen, and P. Wyder, “Plasma Resonances in thin Bi films,” Phys. Rev. B Condens. Matter 33(12), 7947–7955 (1986).
[Crossref] [PubMed]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “alpha -gallium: A metallic molecular crystal,” Phys. Rev. B Condens. Matter 43(17), 14277–14280 (1991).
[Crossref] [PubMed]

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B Condens. Matter 52(14), 9988–9998 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. Tediosi, N. P. Armitage, E. Giannini, and D. van der Marel, “Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth,” Phys. Rev. Lett. 99(1), 016406 (2007).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Proc. Phys. Soc. (2)

J. Bor and C. Bartholomew, “The optical properties of indium, gallium and thallium,” Proc. Phys. Soc. 90(4), 1153–1157 (1967).
[Crossref]

A. P. Lenham, “The optical properties of gallium,” Proc. Phys. Soc. 82(6), 933–937 (1963).
[Crossref]

Proc. Phys. Soc. B (1)

J. Hodgson, “The infra-red properties of bismuth,” Proc. Phys. Soc. B 67(3), 269–270 (1954).
[Crossref]

Science (1)

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Applied Physics: Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

N. Jiang, D. Su, J. C. H. Spence, S. Zhou, and J. Qiu, “Volume plasmon of bismuth nanoparticles,” Solid State Commun. 149(3-4), 111–114 (2009).
[Crossref]

Z. Phys. B (1)

F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Z. Phys. B 34(2), 123–128 (1979).
[Crossref]

Other (6)

http://lucien.saviot.free.fr/mie/index.en.html

C. F. Bohren and D. F. Huffman, “Absorption and scattering of light by small particles,” Wiley-VCH (1998).

S. Núñez-Sánchez, M. López-García, M. M. Murshidy, A. G. Abdel-Hady, M. Y. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Evidence of excitonic optical Tamm states using molecular materials,” arXiv preprint arXiv:1510.01105 (2015).

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” QELS2011, QThC3 (2011).
[Crossref]

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

U. Kreibig and M. Volmer, Optical Properties of Metal Clusters (Springer,1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optically-determined dielectric functions of solid Bi, Sb and Ga gathered from the literature, real part ε1 (top row) and imaginary part ε2 (bottom row). The reported data have been obtained from the following references. Bi crystals: Lenham [45], Tediosi (290 K) [46], Hodgson [47], Markov [48]; Bi films: Harris [49], Khalilzadeh [28], Toudert [29], Hunderi (70 K) [38], Toots [50]. Sb crystals: Lenham [45]; Sb films: Fox [42], Harris [51], Cleary [30], Lemonnier [39], Toots [50]. Ga crystals: Lenham [43], Lenham [52], Kofman [53]; Ga films: Hunderi [54], Bor [55], Jezequel [56]. The regions where free carriers (region I) and interband transitions (region II) have a strong contribution to the dielectric function are depicted in the bottom row by blue and red arrows, respectively.
Fig. 2
Fig. 2 Fit of the dielectric functions (black dots, “Exp”) taken from [38] (Bi) [39], and [42] (Sb) and [54] (Ga). The fit has been done using a sum of a Drude dielectric function (green lines) and Kramers-Kronig consistent Lorentz oscillators (purple dotted lines for individual oscillators (“Oscillators”) - 3 oscillators for Bi, 7 for Sb, 4 for Ga - and purple full lines for the sum of all the oscillators, “All Oscillators”). The parameters of the Lorentz oscillators were used as fit parameters whereas those of the Drude dielectric function were fixed at values taken from the literature: Bi - N* ~3x1019 cm−3, τ = 300 fs [41], Sb - N*~6x1020 cm−3, τ = 31 fs [42], Ga - N* = 2.1022 cm−3, τ = 21 fs [43].
Fig. 3
Fig. 3 Simulated extinction efficiency (Qext) spectra of nanospheres of different diameters D = 20 nm, 40 nm, 60 nm, embedded in a transparent medium (εm = 6.25). The simulations have been performed using a Mie calculation program [59]. Different dielectric functions have been used for the nanospheres: the best-fit dielectric function to the literature data (actual dielectric functions of solid Bi, Sb and Ga - same as in Fig. 2, “All Oscillators + Drude,” black dashed lines), the corresponding contribution of free carriers only (same as in Fig. 2, “Drude,” green lines), the corresponding contribution of interband transitions only (same as in Fig. 2, “All Oscillators,” purple lines). The black vertical arrows show the position of the dipolar localized surface plasmon – like resonances.
Fig. 4
Fig. 4 Simulated photon energy of the dipolar localized surface plasmon-like resonance of solid Bi, Sb and Ga nanospheres as a function of their diameter D and the dielectric function of the surrounding medium εm. The simulations have been performed using a Mie calculation program [59], and the dielectric functions of solid Bi, Sb and Ga were the best-fit to the literature data (same as in Fig. 2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε All   Oscillators + Drude = ε All   Oscillators +   ε Drude
ε All   Oscillators = i = 1 N A i E c , i E c , i 2  E 2 jB i E
ε Drude = 1 w p 2   ( 2 πE h ) 2 + j ( 2 πE h ) τ

Metrics