Abstract

A novel and versatile technique for the facile synthesis of porous ZnS/Zn nano-particles is developed by laser ablation Zn metal in solution containing thioacetamide (TAA), hydrochloric acid (HCl) and hexadecyl trimethyl ammonium bromide (CTAB). The acid plays a critical role in the formation of porous surface structures, due to the acid-decomposition of Zn and S ions in the early stage of the nucleation process. Compared with core-shell ZnS/Zn nano-particles, the as-prepared ZnS/Zn porous structures have enhanced activity in visible-light-driven photocatalytic reduction of extremely toxic aqueous Cr(VI), because of the increased surface area and higher pore volume. The present results have opened up a new paradigm to obtain superior photo-catalyst in reduction of aqueous Cr(VI) under visible light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal

Hua Zhang, Ming Chen, Dameng Wang, Linlin Xu, and Xiangdong Liu
Opt. Mater. Express 6(8) 2573-2583 (2016)

Laser-induced convenient synthesis of porous Cu2O@CuO nanocomposites with excellent adsorption of methyl blue solution

Tiejun Wang, Dameng Wang, Hua Zhang, Xuelin Wang, and Ming Chen
Opt. Mater. Express 7(3) 924-931 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
    [Crossref] [PubMed]
  2. L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
    [Crossref]
  3. C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
    [Crossref] [PubMed]
  4. M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
    [Crossref] [PubMed]
  5. N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
    [Crossref]
  6. H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
    [Crossref]
  7. S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
    [Crossref] [PubMed]
  8. Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
    [Crossref]
  9. B. H. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67(19), 3575–3582 (2003).
    [Crossref]
  10. D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
    [Crossref]
  11. Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
    [Crossref]
  12. Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
    [Crossref]
  13. B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
    [Crossref]
  14. V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?” Phys. Chem. Chem. Phys. 15(9), 3027–3046 (2013).
    [Crossref] [PubMed]
  15. D. M. Wang, M. Chen, X. D. Liu, and X. P. Gao, “Synthesis of ultrafine titania nano-cages by pulsed laser ablation of Ti/Al alloy in ammonium hydroxide,” Chin. Opt. Lett. 13(8), 081404 (2015).
    [Crossref]

2015 (3)

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

D. M. Wang, M. Chen, X. D. Liu, and X. P. Gao, “Synthesis of ultrafine titania nano-cages by pulsed laser ablation of Ti/Al alloy in ammonium hydroxide,” Chin. Opt. Lett. 13(8), 081404 (2015).
[Crossref]

2014 (2)

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

2013 (2)

V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?” Phys. Chem. Chem. Phys. 15(9), 3027–3046 (2013).
[Crossref] [PubMed]

D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
[Crossref]

2012 (2)

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
[Crossref]

2011 (2)

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

2010 (2)

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

2007 (1)

C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
[Crossref] [PubMed]

2003 (1)

B. H. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67(19), 3575–3582 (2003).
[Crossref]

Amendola, V.

V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?” Phys. Chem. Chem. Phys. 15(9), 3027–3046 (2013).
[Crossref] [PubMed]

Bhaumik, M.

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

Cai, Q. Y.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Cai, Z. Y.

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Cao, D. M.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Chen, J.

B. H. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67(19), 3575–3582 (2003).
[Crossref]

Chen, M.

Colorado, H. A.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Deng, K. J.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Dinda, D.

D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
[Crossref]

Dionysiou, D. D.

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Du, X. H.

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Ganguly, M.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Gao, X. P.

Gu, B. H.

B. H. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67(19), 3575–3582 (2003).
[Crossref]

Gu, H. B.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Guo, X.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Guo, Z. H.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Gupta, A.

D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
[Crossref]

Haldolaarachchige, N.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Hsu, C. L.

C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
[Crossref] [PubMed]

Huang, F. Z.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Huang, X. H.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Huang, Y. D.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Jana, J.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Li, J.

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
[Crossref]

Li, S. K.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Li, Y.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Liu, S. H.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Liu, X. D.

Luo, S. L.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Luo, Z. P.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Maity, A.

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

Meneghetti, M.

V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?” Phys. Chem. Chem. Phys. 15(9), 3027–3046 (2013).
[Crossref] [PubMed]

Mondal, C.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

O’Connor, R.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Onyango, M. S.

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

Pal, J.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Pal, T.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Qiu, B.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Rapole, S. B.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Roy, A.

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Saha, S. K.

D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
[Crossref]

Sharma, J.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

She, Y. B.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Shen, Y. H.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Shi, Q. W.

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Srinivasu, V. V.

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

Sun, D. Z.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Tang, H. Q.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Tzou, Y. M.

C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
[Crossref] [PubMed]

Walters, B.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Wang, D. M.

Wang, N.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Wang, Q.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Wang, S. L.

C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
[Crossref] [PubMed]

Wang, X. M.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Wang, Y.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Wang, Y. R.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Weeks, B. L.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Wei, S. Y.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Xiao, Y.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Xie, A. J.

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Xu, H. Y.

Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
[Crossref]

Yang, L. X.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Yang, Z. J.

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Yao, L.

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Young, D. P.

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Yu, Y. M.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Zeng, G. G.

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Zhang, G. S.

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Zhang, Q.

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Zhang, X.

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Zhang, Y. C.

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
[Crossref]

Zhu, L. H.

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Appl. Catal. B (4)

L. X. Yang, Y. Xiao, S. H. Liu, Y. Li, Q. Y. Cai, S. L. Luo, and G. G. Zeng, “Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid,” Appl. Catal. B 94(1-2), 142–149 (2010).
[Crossref]

Y. C. Zhang, J. Li, and H. Y. Xu, “One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI),” Appl. Catal. B 123–124, 18–26 (2012).
[Crossref]

N. Wang, L. H. Zhu, K. J. Deng, Y. B. She, Y. M. Yu, and H. Q. Tang, “Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids,” Appl. Catal. B 95(3–4), 400–407 (2010).
[Crossref]

Y. C. Zhang, L. Yao, G. S. Zhang, D. D. Dionysiou, J. Li, and X. H. Du, “One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI),” Appl. Catal. B 144, 730–738 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Dalton Trans. (1)

S. K. Li, X. Guo, Y. Wang, F. Z. Huang, Y. H. Shen, X. M. Wang, and A. J. Xie, “Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity,” Dalton Trans. 40(25), 6745–6750 (2011).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

C. L. Hsu, S. L. Wang, and Y. M. Tzou, “Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III),” Environ. Sci. Technol. 41(22), 7907–7914 (2007).
[Crossref] [PubMed]

Geochim. Cosmochim. Acta (1)

B. H. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67(19), 3575–3582 (2003).
[Crossref]

J. Hazard. Mater. (1)

M. Bhaumik, A. Maity, V. V. Srinivasu, and M. S. Onyango, “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite,” J. Hazard. Mater. 190(1-3), 381–390 (2011).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (2)

D. Dinda, A. Gupta, and S. K. Saha, “Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification,” J. Mater. Chem. A Mater. Energy Sustain. 1(37), 11221–11228 (2013).
[Crossref]

B. Qiu, Y. R. Wang, D. Z. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. H. Huang, S. Y. Wei, and Z. H. Guo, “Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures,” J. Mater. Chem. A Mater. Energy Sustain. 3(18), 9817–9825 (2015).
[Crossref]

Langmuir (1)

C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, “Morphology Controlled Synthesis of SnS₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light,” Langmuir 30(14), 4157–4164 (2014).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?” Phys. Chem. Chem. Phys. 15(9), 3027–3046 (2013).
[Crossref] [PubMed]

Rsc Adv. (1)

H. B. Gu, S. B. Rapole, J. Sharma, Y. D. Huang, D. M. Cao, H. A. Colorado, Z. P. Luo, N. Haldolaarachchige, D. P. Young, B. Walters, S. Y. Wei, and Z. H. Guo, “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” Rsc Adv. 2(29), 11007–11018 (2012).
[Crossref]

Separ. Purif. Tech. (1)

Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, and Z. J. Yang, “Acid-treated g-C3N4with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light,” Separ. Purif. Tech. 142, 251–257 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The typical low-magnification TEM image of the nano-particles by pulsed laser ablation of Zn target in activated solution containing 0.3 M TAA, 0.05 M CTAB, and 5 μL HCl. (b-c) The representative enlarge TEM images of the productions. (d) HRTEM image of the core-shell like structure. (e-f) The distribution histograms of the ZnS/Zn nano-particles size and the corresponding shell thicknesses, respectively
Fig. 2
Fig. 2 (a) The representative low-magnification TEM images of the nano-cages by laser ablation of Zn target in the aqueous solution of 0.3 M TAA, 0.05 M CTAB and 10 μL HCl. (b) The HRTEM image of the individual nano-cage. (c-d) XRD pattern of the nano-cages and the result of the EDS.
Fig. 3
Fig. 3 The schematic growth of ZnS/Zn core-shell nano-particle and nano-cage structures by multiple pulses laser ablation of Zn target in liquid solution containing low and enough HCl.
Fig. 4
Fig. 4 (a-b) Photocatalytic reduction of 10 mL of 1 × 10−2 M aqueous K2Cr2O7 solution under visible light irradiation in presence of the as-prepared ZnS/Zn core-shell nano-particles and nano-cages, respectively. The photo-catalyst in each solution is 2.7 mg. The insets show the direct photographs of gradual color change of the solution with irradiation time of 0~15 min. (c) Photo-catalytic reduction-time dependence of the relative concentration C/C0 of the Cr(VI) in the solution. (d) The completely reduction times as functions of ZnS/Zn core-shell nano-particles and nano-cages concentrations.

Metrics