Abstract

In this work we have used in situ reflectance to study structural modifications in silica and quartz irradiated with swift heavy ions. Quantitative analysis of reflectance spectra allowed us to (i) obtain the detailed kinetics of surface modification and (ii) reconstruct the refractive index profiles created in the irradiated materials. We have shown that in situ reflectance yields very accurate results; for instance, track radii and irradiation threshold in silica and quartz obtained from our measurements are similar to those reported in the literature. In particular, reflectance has several advantages over Rutherford Backscattering in the channeling configuration (RBS-C) because it can be measured in situ (allowing recording of detailed kinetics not attainable by RBS-C), requires less sophisticated equipment and, more importantly, can be used with any material whereas RBS-C is restricted to mono-crystalline materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low loss optical waveguides fabricated in LiTaO3 by swift heavy ion irradiation

V. Tormo-Marquez, M. Díaz-Hijar, M. Carrascosa, V. Ya. Shur, and J. Olivares
Opt. Express 27(6) 8696-8708 (2019)

Thick optical waveguides in lithium niobate induced by swift heavy ions (~10 MeV/amu) at ultralow fluences

José Olivares, Miguel L. Crespillo, Olga Caballero-Calero, María D. Ynsa, Angel García-Cabañes, Marcel Toulemonde, Christina Trautmann, and Fernando Agulló-López
Opt. Express 17(26) 24175-24182 (2009)

Tailoring the optical constants of diamond by ion implantation

M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer
Opt. Mater. Express 2(5) 644-649 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
    [Crossref]
  2. A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
    [Crossref] [PubMed]
  3. M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
    [Crossref]
  4. J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60(9), 1062–1096 (1972).
    [Crossref]
  5. H. Ryssel and I. Ruge, Ion Implantation (John Wiley and Sons Inc., 1986).
  6. G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
    [Crossref]
  7. J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
    [Crossref] [PubMed]
  8. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).
  9. J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).
  10. R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
    [Crossref]
  11. J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
    [Crossref]
  12. C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).
  13. A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
    [Crossref]
  14. W. J. Weber, “Models and mechanisms of irradiation-induced amorphization in ceramics,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 166–167, 98–106 (2000).
  15. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
    [Crossref]
  16. P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
    [Crossref]
  17. M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
    [Crossref]
  18. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
    [Crossref]
  19. N. Itoh and M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, 2000).
  20. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (University of California Press, 1975).
  21. M. Toulemonde and F. Studer, “Latent track in the electronic stopping power regime,” Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 30–31, 477–488 (1992).
    [Crossref]
  22. S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).
  23. R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
    [Crossref]
  24. C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
    [Crossref]
  25. G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
    [Crossref] [PubMed]
  26. N. Itoh, “Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 135, 175–183 (1998).
  27. F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
    [Crossref]
  28. A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
    [Crossref]
  29. S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).
  30. G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).
  31. E. M. Bringa and R. E. Johnson, “Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: I. Test of “spike” models,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 143, 513–535 (1998).
  32. D. Schwen and E. M. Bringa, “Atomistic simulations of swift ion tracks in diamond and graphite,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 256, 187–192 (2007).
  33. O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).
  34. D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
    [Crossref]
  35. N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
    [Crossref]
  36. E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
    [Crossref]
  37. “CMAM - Centre for Micro Analysis of Materials,” http://www.cmam.uam.es/ .
  38. O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
    [Crossref]
  39. J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
    [Crossref]
  40. O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
    [Crossref]
  41. Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).
  42. O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).
  43. G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
    [Crossref] [PubMed]
  44. A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
    [Crossref] [PubMed]
  45. P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
    [Crossref]
  46. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
    [Crossref] [PubMed]
  47. B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
    [Crossref] [PubMed]
  48. M. Born and E. Wolf, Principles of Optics, 7th (expanded) edition (Cambridge University Press, 1999).
  49. O. Peña-Rodríguez, J. González-Izquierdo, A. Rivera, G. Balabanian, J. Olivares, J. M. Perlado, and L. Bañares, “Embedded silver nanoparticle multilayers fabricated by femtosecond pulsed laser deposition,” Opt. Mater. Express 4(9), 1943–1952 (2014).
    [Crossref]
  50. G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
    [Crossref]
  51. O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
    [Crossref]
  52. J. Ziegler, “SRIM - The Stopping and Range of Ions in Matter,” http://www.srim.org/ .
  53. J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon Press, 1985).

2016 (2)

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

2015 (1)

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

2014 (1)

2013 (2)

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

2012 (7)

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

2010 (2)

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

2009 (3)

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

2008 (2)

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

2007 (1)

D. Schwen and E. M. Bringa, “Atomistic simulations of swift ion tracks in diamond and graphite,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 256, 187–192 (2007).

2006 (1)

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

2005 (2)

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

2004 (3)

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

2002 (2)

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

2000 (1)

W. J. Weber, “Models and mechanisms of irradiation-induced amorphization in ceramics,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 166–167, 98–106 (2000).

1999 (1)

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

1998 (2)

E. M. Bringa and R. E. Johnson, “Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: I. Test of “spike” models,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 143, 513–535 (1998).

N. Itoh, “Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 135, 175–183 (1998).

1995 (2)

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

1993 (3)

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

1992 (1)

M. Toulemonde and F. Studer, “Latent track in the electronic stopping power regime,” Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 30–31, 477–488 (1992).
[Crossref]

1988 (1)

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

1979 (1)

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

1978 (1)

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
[Crossref]

1974 (1)

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

1972 (1)

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60(9), 1062–1096 (1972).
[Crossref]

1965 (1)

R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
[Crossref]

1956 (1)

W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
[Crossref]

Afra, B.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Agulló-López, F.

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

Agulló-Rueda, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Alonso, M. I.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Alsing, P. M.

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

Apostolova, T.

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

Audouard, A.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Aziz, M. J.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Backman, M.

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

Balabanian, G.

Bañares, L.

Bassous, E.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

Beuneu, F.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Bierschenk, T.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Boatner, L. A.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Bringa, E. M.

D. Schwen and E. M. Bringa, “Atomistic simulations of swift ion tracks in diamond and graphite,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 256, 187–192 (2007).

E. M. Bringa and R. E. Johnson, “Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: I. Test of “spike” models,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 143, 513–535 (1998).

Brisard, F.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Byrne, A. P.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Caballero-Calero, O.

Cabrera, J. M.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

Cardimona, D. A.

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

Cha, W.

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

Cookson, D. J.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Costantini, J. M.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Crespillo, M. L.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

Czerski, K.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

Day, P. P.

W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
[Crossref]

Dennard, R. H.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

Destefanis, G. L.

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
[Crossref]

Djurabekova, F.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Dufour, C.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Dural, J.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Ewing, R. C.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

Farlow, G. C.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Fleischer, R. L.

R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
[Crossref]

Fuchs, L. H.

W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
[Crossref]

Gaensslen, F. H.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

Gaiduk, P. I.

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

Gailliard, J. P.

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Gamo, K.

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

García, G.

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

García-Cabañes, A.

Garoz, D.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

Garriga, M.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Gibbons, J. F.

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60(9), 1062–1096 (1972).
[Crossref]

Girard, J. P.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Giulian, R.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

González-Izquierdo, J.

Graham, J. T.

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

Grande, P. L.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

Gu, J.

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

Hage-Ali, M.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Hairie, A.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Hallo, L.

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Hodgson, E.

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

Huang, D.

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

Itoh, N.

N. Itoh, “Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 135, 175–183 (1998).

Jellison, G. E.

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

Jiménez-Rey, D.

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

Jin, K.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

Johnson, R. E.

E. M. Bringa and R. E. Johnson, “Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: I. Test of “spike” models,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 143, 513–535 (1998).

Kirby, N.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Klaumünzer, S.

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

Kluth, P.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Larsen, A. N.

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

LeBlanc, A. R.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

Levalois, M.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Liu, P.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Manzano, J.

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

Manzano-Santamaría, J.

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

McHargue, C. J.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Medvedev, N. A.

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

Meftah, A.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Meldrum, A.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

Méndez, A.

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

Moroño, A.

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

Muñoz, A.

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

Namba, S.

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

Nicolai, P.

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nordlund, K.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Obradors, X.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Olivares, J.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

O. Peña-Rodríguez, J. González-Izquierdo, A. Rivera, G. Balabanian, J. Olivares, J. M. Perlado, and L. Bañares, “Embedded silver nanoparticle multilayers fabricated by femtosecond pulsed laser deposition,” Opt. Mater. Express 4(9), 1943–1952 (2014).
[Crossref]

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

Pakarinen, O. H.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Páramo, Á. R.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

Paumier, E.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

Peña-Rodríguez, O.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

O. Peña-Rodríguez, J. González-Izquierdo, A. Rivera, G. Balabanian, J. Olivares, J. M. Perlado, and L. Bañares, “Embedded silver nanoparticle multilayers fabricated by femtosecond pulsed laser deposition,” Opt. Mater. Express 4(9), 1943–1952 (2014).
[Crossref]

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

Perlado, J. M.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

O. Peña-Rodríguez, J. González-Izquierdo, A. Rivera, G. Balabanian, J. Olivares, J. M. Perlado, and L. Bañares, “Embedded silver nanoparticle multilayers fabricated by femtosecond pulsed laser deposition,” Opt. Mater. Express 4(9), 1943–1952 (2014).
[Crossref]

Prada, A.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

Price, P. B.

R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
[Crossref]

Primak, W.

W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
[Crossref]

Puig, T.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Rankin, J.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Rethfeld, B.

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

Rideout, V. L.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

Ridgway, M. C.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Rivera, A.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

O. Peña-Rodríguez, J. González-Izquierdo, A. Rivera, G. Balabanian, J. Olivares, J. M. Perlado, and L. Bañares, “Embedded silver nanoparticle multilayers fabricated by femtosecond pulsed laser deposition,” Opt. Mater. Express 4(9), 1943–1952 (2014).
[Crossref]

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

Rizza, G.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Rodriguez, M. D.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Roth, M.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

Sánchez-Valdés, C. F.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Schiwietz, G.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

Schnohr, C. S.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Schwen, D.

D. Schwen and E. M. Bringa, “Atomistic simulations of swift ion tracks in diamond and graphite,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 256, 187–192 (2007).

Shcheblanov, N. S.

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

Sklad, P. S.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Sordo, F.

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

Sprouster, D. J.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Staufenbiel, F.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

Stoquert, J. P.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Studer, F.

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

M. Toulemonde and F. Studer, “Latent track in the electronic stopping power regime,” Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 30–31, 477–488 (1992).
[Crossref]

Szenes, G.

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

Tikhonchuk, V. T.

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Toulemonde, M.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

M. Toulemonde and F. Studer, “Latent track in the electronic stopping power regime,” Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 30–31, 477–488 (1992).
[Crossref]

Townsend, P. D.

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
[Crossref]

Trautmann, C.

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref] [PubMed]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

Volkov, A. E.

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

Walker, R. M.

R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
[Crossref]

Wang, X.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

Weber, W. J.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

W. J. Weber, “Models and mechanisms of irradiation-induced amorphization in ceramics,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 166–167, 98–106 (2000).

White, C. W.

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Xue, H.

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

Ynsa, M. D.

Zhang, Y.

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

Zinkle, S. J.

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

Acta Mater. (1)

P. Liu, Y. Zhang, H. Xue, K. Jin, M. L. Crespillo, X. Wang, and W. J. Weber, “A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate,” Acta Mater. 105, 429–437 (2016).
[Crossref]

Appl. Phys. Express (1)

O. Peña-Rodríguez, D. Jiménez-Rey, J. Manzano-Santamaría, J. Olivares, A. Muñoz, A. Rivera, and F. Agulló-López, “Ionoluminescence as sensor of structural disorder in crystalline SiO2: Determination of amorphization threshold by swift heavy ions,” Appl. Phys. Express 5(1), 011101 (2012).
[Crossref]

Appl. Phys. Lett. (2)

J. Manzano-Santamaría, J. Olivares, A. Rivera, O. Peña-Rodríguez, and F. Agulló-López, “Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency,” Appl. Phys. Lett. 101(15), 154103 (2012).
[Crossref]

G. L. Destefanis, P. D. Townsend, and J. P. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett. 32(5), 293–294 (1978).
[Crossref]

Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. (1)

M. Toulemonde and F. Studer, “Latent track in the electronic stopping power regime,” Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 30–31, 477–488 (1992).
[Crossref]

IEEE J. Solid-State Circuits (1)

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits 9(5), 256–268 (1974).
[Crossref]

J. Appl. Phys. (3)

J. Gu, W. Cha, K. Gamo, and S. Namba, “Properties of niobium superconducting bridges prepared by electron-beam lithography and ion implantation,” J. Appl. Phys. 50(10), 6437–6442 (1979).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

R. L. Fleischer, P. B. Price, and R. M. Walker, “Ion explosion splike mechanisms for formation of charged-particle tracks in solids,” J. Appl. Phys. 36(11), 3645 (1965).
[Crossref]

J. Lumin. (2)

A. Rivera, A. Méndez, G. García, J. Olivares, J. M. Cabrera, and F. Agulló-López, “Ion-beam damage and non-radiative exciton decay in LiNbO3,” J. Lumin. 128(5-6), 703–707 (2008).
[Crossref]

M. L. Crespillo, J. T. Graham, Y. Zhang, and W. J. Weber, “In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3,” J. Lumin. 172, 208–218 (2016).
[Crossref]

J. Nucl. Mater. (2)

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002).
[Crossref]

O. Peña-Rodríguez, J. Manzano-Santamaría, A. Rivera, G. García, J. Olivares, and F. Agulló-López, “Kinetics of amorphization induced by swift heavy ions in α-quartz,” J. Nucl. Mater. 430(1-3), 125–131 (2012).
[Crossref]

J. Phys. Appl. Phys. (1)

M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, and W. J. Weber, “Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica,” J. Phys. Appl. Phys. 45(50), 505305 (2012).
[Crossref]

J. Phys. Condens. Matter (3)

A. Rivera, J. Olivares, G. García, and F. Agulló-López, “Swift heavy ion damage to sodium chloride: Synergy between excitation and thermal spikes,” J. Phys. Condens. Matter 24(8), 085401 (2012).
[Crossref] [PubMed]

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde, “A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage?” J. Phys. Condens. Matter 5(26), 4573–4584 (1993).
[Crossref]

B. Afra, M. D. Rodriguez, C. Trautmann, O. H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M. C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, and P. Kluth, “SAXS investigations of the morphology of swift heavy ion tracks in α-quartz,” J. Phys. Condens. Matter 25(4), 045006 (2013).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys. 138(2-3), 462–467 (2013).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. (2)

J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 268, 3147–3150 (2010).

C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHargue, J. Rankin, G. C. Farlow, and M. J. Aziz, “Ion implantation and annealing of crystalline oxides and ceramic materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact, Mater. At. 32, 11–22 (1988).

Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. (11)

J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 272, 271–274 (2012).

Á. R. Páramo, F. Sordo, D. Garoz, O. Peña-Rodríguez, A. Prada, J. Olivares, M. L. Crespillo, J. M. Perlado, and A. Rivera, “Mechanical response to swift ion irradiation-induced nano-tracks in silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 352, 145–147 (2015).

O. Peña-Rodríguez, J. Manzano-Santamaría, J. Olivares, A. Rivera, and F. Agulló-López, “Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 126–130 (2012).

W. J. Weber, “Models and mechanisms of irradiation-induced amorphization in ceramics,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 166–167, 98–106 (2000).

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

S. Klaumünzer, “Ion tracks in quartz and vitreous silica,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 136–153 (2004).

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, “Femtosecond dynamics–snapshots of the early ion-track evolution,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 225, 4–26 (2004).

E. M. Bringa and R. E. Johnson, “Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: I. Test of “spike” models,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 143, 513–535 (1998).

D. Schwen and E. M. Bringa, “Atomistic simulations of swift ion tracks in diamond and graphite,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 256, 187–192 (2007).

O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, and M. C. Ridgway, “Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 1456–1459 (2009).

N. Itoh, “Subthreshold radiation-induced processes in the bulk and on surfaces and interfaces of solids,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 135, 175–183 (1998).

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

W. Primak, L. H. Fuchs, and P. P. Day, “Radiation damage in diamond and silicon carbide,” Phys. Rev. 103(5), 1184–1192 (1956).
[Crossref]

Phys. Rev. B (5)

A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, “Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization,” Phys. Rev. B 59(6), 3981–3992 (1999).
[Crossref]

D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71(4), 045204 (2005).
[Crossref]

N. A. Medvedev, A. E. Volkov, N. S. Shcheblanov, and B. Rethfeld, “Early stage of the electron kinetics in swift heavy ion tracks in dielectrics,” Phys. Rev. B 82(12), 125425 (2010).
[Crossref]

E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

P. I. Gaiduk, A. N. Larsen, C. Trautmann, and M. Toulemonde, “Discontinuous tracks in arsenic-doped crystalline Si0.5Ge0.5 alloy layers,” Phys. Rev. B 66(4), 045316 (2002).
[Crossref]

Phys. Rev. B Condens. Matter (3)

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

G. Szenes, “General features of latent track formation in magnetic insulators irradiated with swift heavy ions,” Phys. Rev. B Condens. Matter 51(13), 8026–8029 (1995).
[Crossref] [PubMed]

A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer, and M. Toulemonde, “Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect,” Phys. Rev. B Condens. Matter 48(2), 920–925 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine structure in swift heavy ion tracks in amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Proc. IEEE (1)

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60(9), 1062–1096 (1972).
[Crossref]

Thin Solid Films (1)

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

Other (7)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) edition (Cambridge University Press, 1999).

J. Ziegler, “SRIM - The Stopping and Range of Ions in Matter,” http://www.srim.org/ .

J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon Press, 1985).

H. Ryssel and I. Ruge, Ion Implantation (John Wiley and Sons Inc., 1986).

N. Itoh and M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, 2000).

R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (University of California Press, 1975).

“CMAM - Centre for Micro Analysis of Materials,” http://www.cmam.uam.es/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of the setup used for in situ reflectance measurements. Samples can be irradiated with swift heavy ions and simultaneously illuminated with white light (blue arrows). Reflected light is collected by an optical fiber and guided to a CCD array spectrometer.
Fig. 2
Fig. 2 Reflectance spectra for (a) silica and (b) quartz irradiated with 5 MeV F ions at different fluences. Continuous red lines are the best fit of the experimental data using the multilayer model.
Fig. 3
Fig. 3 Schematic representation of the refractive index variations as a function of fluence for (a) low and (b) high fluences. (c) Multilayer model used to fit the reflectance spectra. In all cases regions 1, 2, and 3 represent the vacuum, the irradiated region and the pristine material, respectively.
Fig. 4
Fig. 4 Surface refractive index (at 633 nm) for silica (curves increasing) and quartz (curves decreasing) samples irradiated with various types of swift heavy ions.
Fig. 5
Fig. 5 Normalized variation of the dielectric function for silica and quartz samples irradiated with F ions at 5 MeV. Experimental values were fitted using a modified Poisson law: Δεn = Δεmax[1−exp(−σϕ)], which allowed us to determine first the cross section of the track (σ) and then its radius (σ = πR2).
Fig. 6
Fig. 6 Surface track radii in silica and quartz as a function of the stopping power. Orange continuous lines are a fit of the data using Szenes’ model [43].
Fig. 7
Fig. 7 Effective dielectric function profiles obtained from the fits for (a) silica and (b) quartz samples irradiated with 5 MeV F ions at various fluences. The nuclear stopping power predicted by SRIM-2013 is plotted in orange.

Metrics