Abstract

A transparent optical fingerprint capture system based on grating couplers was proposed and demonstrated. Metallic gratings were used as high efficiency input/output couplers to control the light propagation in the planar waveguide. Via the comprehensive design of grating pitch and waveguide thickness, not only was light coupling achieved, but also the propagation angle of the light beam in the waveguide was well engineered to avoid the overlap of images; thus an undistorted full area of finger sensing is fulfilled in a slim and transparent structure. The proposed system was experimentally demonstrated with characteristics of considerable contrast as a potential candidate of a fingerprint sensor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Moiré-free fingerprint sensors based on multilayer oxide-metal-oxide electrodes

Eun-Hyoung Cho, Hyun Joon Kim, Bon Won Koo, Seog Woo Hong, Jung Yeon Won, Hae-Sung Kim, Hong Suk Kim, Seok-Whan Chung, Yong Sung Kim, Byung-Kyu Lee, and Chang Seung Lee
Opt. Express 26(19) 24973-24984 (2018)

Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system

Zecen Zhang, Geok Ing Ng, Ting Hu, Haodong Qiu, Xin Guo, Mohamed Saïd Rouifed, Chongyang Liu, and Hong Wang
Opt. Express 24(22) 25665-25675 (2016)

Capturing the vital vascular fingerprint with optical coherence tomography

Gangjun Liu and Zhongping Chen
Appl. Opt. 52(22) 5473-5477 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
    [Crossref]
  2. B. A. Ganji and M. S. Nateri, “A high sensitive MEMS capacitive fingerprint sensor using slotted membrane,” Microsyst. Technol. 19(1), 121–129 (2013).
    [Crossref]
  3. B. Bhagavatula, Ur, K. Iacovino, S. M. Kywe, L. F. Cranor and M. Savvides. “Biometric authentication on iphone and android: Usability, perceptions, and influences on adoption,” in Proc. USEC. (Internet Society, 2015), pp. 1–2.
  4. R. G. Maev, E. Y. Bakulin, E. Y. Maeva, and F. M. Severin, “High resolution ultrasonic method for 3D fingerprint representation in biometrics,” in Acoustical Imaging, Iwaki Akiyama, ed. (Springer Netherlands, 2008), pp. 279–285.
  5. S. Memon, M. Sepasian, and W. Balachandran, “Review of fingerprint sensing technologies,” in Proceedings of IEEE Conference on Multitopic Conference (IEEE, 2008), 226–231.
  6. C. Holz and P. Baudisch, “Fiberio: a touchscreen that senses fingerprints,” in Proceedings of the 26th Annual ACM Symposium on User interface Software and Technology, Sharam Izadi, Aaron Quigley, eds. (ACM 2013), pp. 41–50.
  7. Y. Jie and Z. Jihong, “Fingerprint sensor using a polymer dispersed liquid crystal holographic lens,” Appl. Opt. 49(25), 4763–4766 (2010).
    [Crossref] [PubMed]
  8. B. Chennankara, W. Y. Xu, F. C. Lin, M. D. Drake, and M. A. Fiddy, “Optical fingerprint recognition using a waveguide hologram,” Appl. Opt. 34(20), 4079–4082 (1995).
    [Crossref] [PubMed]
  9. Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).
  10. D. A. Gregory and T. Corboline, “Prism fingerprint sensor that uses a holographic optical element: comment,” Appl. Opt. 36(23), 5756 (1997).
    [Crossref] [PubMed]
  11. T. C. Teng and J. C. Ke, “A novel optical film to provide a highly collimated planar light source,” Opt. Express 21(18), 21444–21455 (2013).
    [Crossref] [PubMed]
  12. M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
    [Crossref]
  13. A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000).
    [Crossref] [PubMed]
  14. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).
  15. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation: Physical Chemistry: A Series of Monographs (Academic, 2013).
  16. I. Emiroglu and M. B. Akhan, “Pre-processing of fingerprint images,” in Proceedings of IEEE Conference on Security and Detection (IEEE, 1997), pp. 147–151.
  17. H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
    [Crossref]
  18. L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognit. 22(1), 29–38 (1989).
    [Crossref]
  19. S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
    [Crossref]
  20. T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
    [Crossref]
  21. Y. Yang and H. Yan, “An adaptive logical method for binarization of degraded document images,” Pattern Recognit. 33(5), 787–807 (2000).
    [Crossref]
  22. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
    [Crossref] [PubMed]
  23. T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
    [Crossref]
  24. I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
    [Crossref]

2013 (2)

B. A. Ganji and M. S. Nateri, “A high sensitive MEMS capacitive fingerprint sensor using slotted membrane,” Microsyst. Technol. 19(1), 121–129 (2013).
[Crossref]

T. C. Teng and J. C. Ke, “A novel optical film to provide a highly collimated planar light source,” Opt. Express 21(18), 21444–21455 (2013).
[Crossref] [PubMed]

2012 (1)

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

2010 (2)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Y. Jie and Z. Jihong, “Fingerprint sensor using a polymer dispersed liquid crystal holographic lens,” Appl. Opt. 49(25), 4763–4766 (2010).
[Crossref] [PubMed]

2009 (1)

I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
[Crossref]

2003 (1)

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

2001 (1)

Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).

2000 (2)

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000).
[Crossref] [PubMed]

Y. Yang and H. Yan, “An adaptive logical method for binarization of degraded document images,” Pattern Recognit. 33(5), 787–807 (2000).
[Crossref]

1999 (1)

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

1998 (1)

H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
[Crossref]

1997 (1)

1996 (1)

T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[Crossref]

1995 (1)

1989 (1)

L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognit. 22(1), 29–38 (1989).
[Crossref]

Ahn, B. C.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Akhan, M. B.

I. Emiroglu and M. B. Akhan, “Pre-processing of fingerprint images,” in Proceedings of IEEE Conference on Security and Detection (IEEE, 1997), pp. 147–151.

Anil, J.

H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
[Crossref]

Arai, T.

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Balachandran, W.

S. Memon, M. Sepasian, and W. Balachandran, “Review of fingerprint sensing technologies,” in Proceedings of IEEE Conference on Multitopic Conference (IEEE, 2008), 226–231.

Bhagavatula, B.

B. Bhagavatula, Ur, K. Iacovino, S. M. Kywe, L. F. Cranor and M. Savvides. “Biometric authentication on iphone and android: Usability, perceptions, and influences on adoption,” in Proc. USEC. (Internet Society, 2015), pp. 1–2.

Boehlau-Godau, M.

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000).
[Crossref] [PubMed]

Chennankara, B.

Corboline, T.

Drake, M. D.

Emiroglu, I.

I. Emiroglu and M. B. Akhan, “Pre-processing of fingerprint images,” in Proceedings of IEEE Conference on Security and Detection (IEEE, 1997), pp. 147–151.

Fiddy, M. A.

Fujieda, I.

I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
[Crossref]

Ganji, B. A.

B. A. Ganji and M. S. Nateri, “A high sensitive MEMS capacitive fingerprint sensor using slotted membrane,” Microsyst. Technol. 19(1), 121–129 (2013).
[Crossref]

Goser, K. F.

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Gregory, D. A.

Inaba, Y.

I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
[Crossref]

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jie, Y.

Jihong, Z.

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jung, S.

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Jung, Y. H.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Ke, J. C.

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kim, M. J.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Knüttel, A.

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000).
[Crossref] [PubMed]

Kolke, Y.

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Kosugi, T.

I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
[Crossref]

Kurashima, T.

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Lan, Q.

Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).

Lee, M. H.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Lee, S. K.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Lim, J.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Lin, F. C.

Lin, H.

H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
[Crossref]

Memon, S.

S. Memon, M. Sepasian, and W. Balachandran, “Review of fingerprint sensing technologies,” in Proceedings of IEEE Conference on Multitopic Conference (IEEE, 2008), 226–231.

Moon, W. T.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Nateri, M. S.

B. A. Ganji and M. S. Nateri, “A high sensitive MEMS capacitive fingerprint sensor using slotted membrane,” Microsyst. Technol. 19(1), 121–129 (2013).
[Crossref]

Nickerson, J. V.

L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognit. 22(1), 29–38 (1989).
[Crossref]

O’Gorman, L.

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognit. 22(1), 29–38 (1989).
[Crossref]

Sakuma, K.

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Scheiter, T.

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Sepasian, M.

S. Memon, M. Sepasian, and W. Balachandran, “Review of fingerprint sensing technologies,” in Proceedings of IEEE Conference on Multitopic Conference (IEEE, 2008), 226–231.

Sun, W. Y.

Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).

Tamir, T.

T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[Crossref]

Taqaya, A.

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Teng, T. C.

Thewes, R.

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Wan, Y. F.

H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
[Crossref]

Weber, W.

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Xia, X.

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

Xu, W. Y.

Yan, H.

Y. Yang and H. Yan, “An adaptive logical method for binarization of degraded document images,” Pattern Recognit. 33(5), 787–807 (2000).
[Crossref]

Yang, Y.

Y. Yang and H. Yan, “An adaptive logical method for binarization of degraded document images,” Pattern Recognit. 33(5), 787–807 (2000).
[Crossref]

Yoon, J. S.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

Zhang, S.

T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[Crossref]

Zheng, Y.

Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).

Adv. Mater. (1)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Appl. Opt. (3)

IEEE T. Pattern. Anal. (1)

H. Lin, Y. F. Wan, and J. Anil, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE T. Pattern. Anal. 20(8), 777–789 (1998).
[Crossref]

J. Biomed. Opt. (1)

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5(1), 83–92 (2000).
[Crossref] [PubMed]

J. Disp. Technol. (1)

I. Fujieda, T. Kosugi, and Y. Inaba, “Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber,” J. Disp. Technol. 5(11), 414–417 (2009).
[Crossref]

J. Lightwave Technol. (1)

T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996).
[Crossref]

J. Solid-State Circuits (1)

S. Jung, R. Thewes, T. Scheiter, K. F. Goser, and W. Weber, “A low-power and high-performance CMOS fingerprint sensing and encoding architecture,” J. Solid-State Circuits 34(7), 978–984 (1999).
[Crossref]

Journal of Tsing Hua University (1)

Y. Zheng, W. Y. Sun, and Q. Lan, “Experimental study on waveguide hologram fingerprint sensors,” Journal of Tsing Hua University 41(11), 68–70 (2001).

Microsyst. Technol. (1)

B. A. Ganji and M. S. Nateri, “A high sensitive MEMS capacitive fingerprint sensor using slotted membrane,” Microsyst. Technol. 19(1), 121–129 (2013).
[Crossref]

Opt. Express (1)

Opt. Rev. (1)

T. Kurashima, K. Sakuma, T. Arai, A. Taqaya, and Y. Kolke, “A polarized laser backlight using a zero-zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Pattern Recognit. (3)

Y. Yang and H. Yan, “An adaptive logical method for binarization of degraded document images,” Pattern Recognit. 33(5), 787–807 (2000).
[Crossref]

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,” Pattern Recognit. 22(1), 29–38 (1989).
[Crossref]

Other (8)

I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, 1991).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation: Physical Chemistry: A Series of Monographs (Academic, 2013).

I. Emiroglu and M. B. Akhan, “Pre-processing of fingerprint images,” in Proceedings of IEEE Conference on Security and Detection (IEEE, 1997), pp. 147–151.

M. H. Lee, W. T. Moon, M. J. Kim, S. K. Lee, J. S. Yoon, Y. H. Jung, and B. C. Ahn, “New light collimation film (LCF) for direct‐lit BLU system,” in SID Symposium Digest of Technical Papers (SID, 2006) pp. 503–505.
[Crossref]

B. Bhagavatula, Ur, K. Iacovino, S. M. Kywe, L. F. Cranor and M. Savvides. “Biometric authentication on iphone and android: Usability, perceptions, and influences on adoption,” in Proc. USEC. (Internet Society, 2015), pp. 1–2.

R. G. Maev, E. Y. Bakulin, E. Y. Maeva, and F. M. Severin, “High resolution ultrasonic method for 3D fingerprint representation in biometrics,” in Acoustical Imaging, Iwaki Akiyama, ed. (Springer Netherlands, 2008), pp. 279–285.

S. Memon, M. Sepasian, and W. Balachandran, “Review of fingerprint sensing technologies,” in Proceedings of IEEE Conference on Multitopic Conference (IEEE, 2008), 226–231.

C. Holz and P. Baudisch, “Fiberio: a touchscreen that senses fingerprints,” in Proceedings of the 26th Annual ACM Symposium on User interface Software and Technology, Sharam Izadi, Aaron Quigley, eds. (ACM 2013), pp. 41–50.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Prototype of the proposed TOFCS: One part of the light from backlight source is used for detecting, the other part is for displaying. (b) Cross section view of the proposed waveguide-grating coupler structure. Light is in-coupled in the waveguide and out-coupled with fingerprint information at the respective grating areas. T denotes the pitch of metallic gratings; h is the thickness of the waveguide; Lg is the width of the grating; Lfin denotes the width of the detection region; wg/T denotes the duty cycle; hg is the grating depth; hf is the height of aluminum film; PR means photoresist.
Fig. 2
Fig. 2 The simulated fingerprint images from detector under three different incident angles ( θ w ) = 70°(a1), 78°(b1), 79°(c1) and their corresponding light traces in the planar waveguide (a2), (b2) and (c2). The fingerprint image is overlapped with detecting angle 70°, and the finger is unable to break TIR in the finger-waveguide surface with incident angle 79°. Therefore, incident angle 78° is a relatively good choice here. Note that the dense black lines show the lights in the waveguide, and the red lines show the path of the lights. The green wire frame represents a human finger.
Fig. 3
Fig. 3 (a) Fabrication process of the metallic grating. (b) Optical setup of laser interference lithography. (c) Top and cross section view SEM picture of the fabricated grating. (d) The fabricated device with a background picture of Shanghai Jiao Tong University’s logo under the transparent detection region.
Fig. 4
Fig. 4 (a) Simulated polarized −1th order diffractive spectra of the bi-layer Al and dielectric gratings under incident angle of 15°. (b) Simulated and measured out-coupled non-polarized spectra of the fabricated metallic grating which compose 50% TE polarization and 50% TM polarization under incident angle of 15°. The inset picture depicts the out-coupled light from the side of the device with white light irradiation. (c) Spectrum of a green laser diode used in the experiment which shows a peak wavelength of 530nm just corresponding to the maximal diffraction efficiency of grating.
Fig. 5
Fig. 5 (a1) Simulated −1th order diffractive spectra of the bi-layer Al grating with TE polarization and (a2) TM polarization with duty cycle 0.1-0.9 and incident angle 15°; (b1) Simulated −1th order diffractive spectra of bi-layer Al grating with TE polarization and (b2) TM polarization with grating etch depth 50-500nm with incident angle 15°. (c1) Simulated −1th order diffractive spectra of bi-layer Al grating with TE polarization and (c2) TM polarization with refractive index of the PR with incident angle 15°.
Fig. 6
Fig. 6 (a) The snapshots of the device without finger touching and (b) with finger touching. The fingerprint image shining on a filter paper is used to represent the output signal. The inset image shows the process. (c) Original full area fingerprint image captured by a camera and (d) processed by adaptive threshold algorithm.

Tables (1)

Tables Icon

Table 1 The Parameters set in the Metallic Gratings

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n fin > n sub sin θ w > n air
k 0 n air sin θ i G= k 0 n sub sin θ w
1 n air + n air sin θ i > T λ > 1 n fin + n air sin θ i
  L g L fin
2htan θ w L g

Metrics