Abstract

This study shows that the optical properties of titanium oxide films depend on their chemical composition as well as structure properties. The chemical composition as well as the structure of the sputter-deposited titanium oxide films on fused quartz glass substrates was modulated by annealing them in Ar/H2 atmosphere, experimentally investigated by various spectroscopic methods including XRD, Raman, SIMS, and UV-Vis spectroscopy and simulated by Bruggeman effective medium theory (BR-EMT) and full wave finite difference time domain (FDTD) approach. The as-deposited films are amorphous titanium oxide films with oxygen deficiency, become closer to titanium dioxide in stoichiometry, and are converted to crystalline anatase TiO2 nano-particles with particle size of ~21 nm by increasing the annealing temperature from 100 °C to 450 °C. The annealing process also allows the titanium oxide films to be spontaneously doped with environmental carbon species or coated with nano-crystalline graphitic carbon. Further the FDTD simulation results indicate that the annealed titanium oxide films become porous. The chemical composition modulation, anatase crystalline formation, carbon doping and graphitic carbon coating are simultaneously achieved by the simply annealing the sputter-deposited amorphous titanium oxide thin films on fused quartz substrates at relatively low temperatures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties

Muhammad Rizwan Saleem, Seppo Honkanen, and Jari Turunen
Appl. Opt. 52(3) 422-432 (2013)

Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride

Jan Kischkat, Sven Peters, Bernd Gruska, Mykhaylo Semtsiv, Mikaela Chashnikova, Matthias Klinkmüller, Oliana Fedosenko, Stephan Machulik, Anna Aleksandrova, Gregorii Monastyrskyi, Yuri Flores, and W. Ted Masselink
Appl. Opt. 51(28) 6789-6798 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  2. T. L. Thompson and J. T. Yates., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev. 106(10), 4428–4453 (2006).
    [Crossref] [PubMed]
  3. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
    [Crossref]
  4. M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
    [Crossref]
  5. K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
    [Crossref]
  6. E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
    [Crossref]
  7. N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
    [Crossref]
  8. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
    [Crossref]
  9. V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
    [Crossref]
  10. A. Sclafani and J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photochem. Photobiol. Chem. 113(2), 181–188 (1998).
    [Crossref]
  11. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
    [Crossref] [PubMed]
  12. D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
    [Crossref]
  13. W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
    [Crossref]
  14. H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
    [Crossref] [PubMed]
  15. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
    [Crossref]
  16. H. Park and W. Choi, “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors,” J. Phys. Chem. B 108(13), 4086–4093 (2004).
    [Crossref]
  17. S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
    [Crossref] [PubMed]
  18. K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
    [Crossref]
  19. F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
    [Crossref]
  20. H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
    [Crossref] [PubMed]
  21. C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
    [Crossref]
  22. Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
    [Crossref] [PubMed]
  23. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
    [Crossref] [PubMed]
  24. S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
    [Crossref]
  25. J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
    [Crossref] [PubMed]
  26. P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
    [Crossref]
  27. N. Ghrairi and M. Bouaicha, “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique,” Nanoscale Res. Lett. 7(1), 357–363 (2012).
    [Crossref] [PubMed]
  28. M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
    [Crossref]
  29. M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
    [Crossref]
  30. H. Kangarlou and S. Rafizadeh, “Influence of Thickness on Structural and Optical Properties of Titanium Oxide Thin Layers,” in Scanning Probe Microscopy-Physical Property Characterization at Nanoscale, V. Nalladega, ed. (Intech, 2012).
  31. B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
    [Crossref]
  32. S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
    [Crossref]
  33. K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
    [Crossref]
  34. C. Lee and J. Choi, “Nonlinear thickness and oxidation-dependent transparency and conductance of sputtered titanium suboxide nanofilms,” Opt. Mater. Express 6(6), 1837–1852 (2016).
    [Crossref]
  35. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
    [Crossref]
  36. U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. Solid State Chem. 42(3), 276–282 (1982).
    [Crossref]
  37. F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
    [PubMed]
  38. M. A. Tamor and W. C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6), 3823–3830 (1994).
    [Crossref]
  39. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
    [Crossref]
  40. Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
    [Crossref]
  41. M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
    [Crossref]
  42. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35(34), 6703–6707 (1996).
    [Crossref] [PubMed]
  43. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]

2016 (2)

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

C. Lee and J. Choi, “Nonlinear thickness and oxidation-dependent transparency and conductance of sputtered titanium suboxide nanofilms,” Opt. Mater. Express 6(6), 1837–1852 (2016).
[Crossref]

2014 (2)

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

2013 (2)

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

2012 (2)

P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
[Crossref]

N. Ghrairi and M. Bouaicha, “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique,” Nanoscale Res. Lett. 7(1), 357–363 (2012).
[Crossref] [PubMed]

2011 (1)

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

2010 (1)

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

2008 (4)

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

2007 (2)

K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
[Crossref]

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

2006 (2)

T. L. Thompson and J. T. Yates., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev. 106(10), 4428–4453 (2006).
[Crossref] [PubMed]

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

2005 (2)

H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
[Crossref] [PubMed]

C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
[Crossref]

2004 (3)

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

H. Park and W. Choi, “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors,” J. Phys. Chem. B 108(13), 4086–4093 (2004).
[Crossref]

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

2003 (3)

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

2002 (5)

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
[Crossref]

2001 (2)

V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
[Crossref]

K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
[Crossref]

2000 (2)

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

1998 (1)

A. Sclafani and J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photochem. Photobiol. Chem. 113(2), 181–188 (1998).
[Crossref]

1996 (1)

1994 (3)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
[Crossref]

M. A. Tamor and W. C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6), 3823–3830 (1994).
[Crossref]

1982 (1)

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. Solid State Chem. 42(3), 276–282 (1982).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Adachi, T.

H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
[Crossref] [PubMed]

Akiyoshi, M.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Allen, N. S.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Al-Shahry, M.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Alzamani, M.

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

Amor, S. B.

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Andersson, M.

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

Asai, K.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Awazu, K.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Balachandran, U.

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. Solid State Chem. 42(3), 276–282 (1982).
[Crossref]

Baud, G.

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Benkstein, K.

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

Bouaicha, M.

N. Ghrairi and M. Bouaicha, “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique,” Nanoscale Res. Lett. 7(1), 357–363 (2012).
[Crossref] [PubMed]

Brezová, V.

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

Burda, C.

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

Chen, Q.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Chen, X.

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

Chen, Z.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Cho, K.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Choi, H.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Choi, J.

Choi, W.

H. Park and W. Choi, “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors,” J. Phys. Chem. B 108(13), 4086–4093 (2004).
[Crossref]

W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
[Crossref]

Ciston, S.

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

Claverie, J. P.

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Dong, F.

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

Dvoranová, D.

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

Edge, M.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Eghdam, E.

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Eror, N. G.

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. Solid State Chem. 42(3), 276–282 (1982).
[Crossref]

Eu, S.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Frank, A.

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

Fujimaki, M.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Fujishima, A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Furusawa, T.

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

Ghedira, M.

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Ghrairi, N.

N. Ghrairi and M. Bouaicha, “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique,” Nanoscale Res. Lett. 7(1), 357–363 (2012).
[Crossref] [PubMed]

Gole, J. L.

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

Gray, K. A.

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

Guedri, L.

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Guo, S.

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

Hayashi, S.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

He, X.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

He, Y. L.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Herrmann, J.

A. Sclafani and J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photochem. Photobiol. Chem. 113(2), 181–188 (1998).
[Crossref]

Hoffmann, M. R.

W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
[Crossref]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Huang, H.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Im, J.

K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
[Crossref]

Imahori, H.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Ingler, W. B.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jacquet, M.

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Jinnai, H.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Jo, S.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Kamat, P. V.

V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
[Crossref]

Kamisaka, H.

H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
[Crossref] [PubMed]

Kang, S.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Kang, Z.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Kärkkäinen, K.

K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
[Crossref]

Karunagaran, B.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Khan, S. U.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Kim, J.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Kim, M.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Kim, S. Y.

Kopidakis, N.

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

Koshy, P.

P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
[Crossref]

Lee, C.

Lee, S. T.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Lee, Y.

K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
[Crossref]

Li, G.

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

Li, H.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Li, X.

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

Lian, S.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Liauw, C. M.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Liu, F.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Liu, H.

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Liu, J.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

Liu, Y.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Ljungström, S.

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

Lou, Y.

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

Lueptow, R. M.

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

Ma, H.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Malati, M.

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

Mangalaraj, D.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Manoj, P. K.

P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
[Crossref]

Mastali, S.

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

Matano, Y.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Matsumura, M.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Mazúr, M.

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

McIntyre, R. B.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Mitsui, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Mohan Rao, G.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Murakami, H.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Narayandass, S. K.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Ngamsinlapasathian, S.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Nikoskinen, K.

K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
[Crossref]

Oguro, A.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Ohki, Y.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Ohno, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Ortega, A.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Österlund, L.

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

Östling, M.

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

Pacchioni, G.

C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
[Crossref]

Palanivelu, K.

K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
[Crossref]

Palmqvist, A.

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

Park, H.

H. Park and W. Choi, “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors,” J. Phys. Chem. B 108(13), 4086–4093 (2004).
[Crossref]

Park, J.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Park, Y.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Qiu, Z.

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

Rajendra Kumar, R. T.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Rockstuhl, C.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Sang, Y.

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Sato, M.

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

Schmidt, H.

M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
[Crossref]

Schmitz, C.

M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
[Crossref]

Sclafani, A.

A. Sclafani and J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photochem. Photobiol. Chem. 113(2), 181–188 (1998).
[Crossref]

Selloni, A.

C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
[Crossref]

Shishido, T.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Shokuhfar, A.

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

Sihvola, A.

K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
[Crossref]

Sim, M.

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Stout, J. D.

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

Stratton, J.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Subramanian, V.

V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
[Crossref]

Sun, H.

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

Suzuki, N.

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

Tamor, M. A.

M. A. Tamor and W. C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6), 3823–3830 (1994).
[Crossref]

Tang, C.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Termin, A.

W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
[Crossref]

Thelakkat, M.

M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
[Crossref]

Thompson, T. L.

T. L. Thompson and J. T. Yates., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev. 106(10), 4428–4453 (2006).
[Crossref] [PubMed]

Tominaga, J.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Tryk, D. A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Tsang, C. H.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Ukaji, E.

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

Umebayashi, T.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Umeyama, T.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Vaidyan, V. K.

P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
[Crossref]

Valentin, C. D.

C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
[Crossref]

van de Lagemaat, J.

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

Vasei, M.

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Vassell, W. C.

M. A. Tamor and W. C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6), 3823–3830 (1994).
[Crossref]

Viswanathan, C.

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Wang, H.

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

Wang, S.

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

Wang, Z.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Watanabe, T.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Wolf, E.

V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
[Crossref]

Wu, Z.

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

Yamashita, K.

H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
[Crossref] [PubMed]

Yang, X.

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

Yates, J. T.

T. L. Thompson and J. T. Yates., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev. 106(10), 4428–4453 (2006).
[Crossref] [PubMed]

Yin, Z.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Yoshida, N.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Yoshikawa, S.

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Zhan, P.

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Zhang, J.

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Zhang, M. S.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Zhang, S.

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

Zhang, W. F.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Zhang, X.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Zhang, Z.

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Zhang, M. Vasei, Y. Sang, H. Liu, and J. P. Claverie, “TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis,” ACS Appl. Mater. Interfaces 8(3), 1903–1912 (2016).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

M. Kim, J. Kim, H. Choi, J. Park, S. Jo, M. Sim, J. Kim, H. Jinnai, Y. Park, and K. Cho, “Electrical Performance of Organic Solar Cells with Additive-Assisted Vertical Phase Separation in the Photoactive Layer,” Adv. Energy Mater. 4(2), 1300612 (2014).
[Crossref]

Adv. Mater. (1)

M. Thelakkat, C. Schmitz, and H. Schmidt, “Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,” Adv. Mater. 14(8), 577–581 (2002).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, “Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design,” Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
[Crossref] [PubMed]

Appl. Catal. A Gen. (1)

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Appl. Catal. A Gen. 265(1), 115–121 (2004).
[Crossref]

Appl. Catal. B (1)

D. Dvoranová, V. Brezová, M. Mazúr, and M. Malati, “Investigations of metal-doped titanium dioxide photocatalysts,” Appl. Catal. B 37(2), 91–105 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Appl. Surf. Sci. 254(2), 563–569 (2007).
[Crossref]

Carbon Sci. (1)

K. Palanivelu, J. Im, and Y. Lee, “Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review,” Carbon Sci. 8(3), 214–224 (2007).
[Crossref]

Chem. Eng. J. (1)

S. Liu, H. Sun, S. Liu, and S. Wang, “Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts,” Chem. Eng. J. 214(1), 298–303 (2013).
[Crossref]

Chem. Mater. (1)

C. D. Valentin, G. Pacchioni, and A. Selloni, “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater. 17(26), 6656–6665 (2005).
[Crossref]

Chem. Rev. (1)

T. L. Thompson and J. T. Yates., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev. 106(10), 4428–4453 (2006).
[Crossref] [PubMed]

Cryst. Res. Technol. (1)

B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass, and G. Mohan Rao, “Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry,” Cryst. Res. Technol. 38(9), 773–778 (2003).
[Crossref]

Environ. Sci. Technol. (1)

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 42(13), 4952–4957 (2008).
[Crossref] [PubMed]

IEEE T. Geosci. Remote (1)

K. Kärkkäinen, A. Sihvola, and K. Nikoskinen, “Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method,” IEEE T. Geosci. Remote 39(5), 1013–1018 (2001).
[Crossref]

IEEE Trans. Electron Dev. (1)

Z. Qiu, Z. Zhang, M. Östling, and S. Zhang, “A Comparative Study of Two Different Schemes to Dopant Segregation at NiSi/Si and PtSi/Si Interfaces for Schottky Barrier Height Lowering,” IEEE Trans. Electron Dev. 55(1), 396–403 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. A. Tamor and W. C. Vassell, “Raman “fingerprinting” of amorphous carbon films,” J. Appl. Phys. 76(6), 3823–3830 (1994).
[Crossref]

J. Chem. Phys. (1)

H. Kamisaka, T. Adachi, and K. Yamashita, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys. 123(8), 084704 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

A. Sclafani and J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photochem. Photobiol. Chem. 113(2), 181–188 (1998).
[Crossref]

J. Phys. Chem. (1)

W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
[Crossref]

J. Phys. Chem. B (5)

H. Park and W. Choi, “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors,” J. Phys. Chem. B 108(13), 4086–4093 (2004).
[Crossref]

K. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[Crossref]

J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale,” J. Phys. Chem. B 108(4), 1230–1240 (2004).
[Crossref]

V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?” J. Phys. Chem. B 105(46), 11439–11446 (2001).
[Crossref]

M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B 106(41), 10674–10679 (2002).
[Crossref]

J. Phys. Chem. C (1)

F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, “Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach,” J. Phys. Chem. C 115(27), 13285–13292 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anatase TiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

J. Solid State Chem. (1)

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. Solid State Chem. 42(3), 276–282 (1982).
[Crossref]

Langmuir (1)

H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, and S. Yoshikawa, “Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2 and Nb, Ge, Zr-Added TiO2 Composite Electrodes,” Langmuir 22(26), 11405–11411 (2006).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77(3), 903–911 (2003).
[Crossref]

Mater. Sci. Semicond. Process. (1)

M. Alzamani, A. Shokuhfar, E. Eghdam, and S. Mastali, “Sol–gel fabrication and enhanced optical properties, photocatalysis, and surface wettability of nanostructured titanium dioxide films,” Mater. Sci. Semicond. Process. 16(4), 1063–1069 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

N. Ghrairi and M. Bouaicha, “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique,” Nanoscale Res. Lett. 7(1), 357–363 (2012).
[Crossref] [PubMed]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Polym. Degrad. Stabil. (1)

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. McIntyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilizers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings,” Polym. Degrad. Stabil. 78(3), 467–478 (2002).
[Crossref]

Prog. Nat. Sci.: Mater. Int. (1)

P. K. Manoj, P. Koshy, and V. K. Vaidyan, “Transparent anatase titania films: A critical study on optical properties,” Prog. Nat. Sci.: Mater. Int. 22(2), 79–85 (2012).
[Crossref]

Sci. Rep. (1)

F. Liu, C. Tang, P. Zhan, Z. Chen, H. Ma, and Z. Wang, “Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS,” Sci. Rep. 4, 4494 (2014).
[PubMed]

Science (1)

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Other (1)

H. Kangarlou and S. Rafizadeh, “Influence of Thickness on Structural and Optical Properties of Titanium Oxide Thin Layers,” in Scanning Probe Microscopy-Physical Property Characterization at Nanoscale, V. Nalladega, ed. (Intech, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) X-ray diffraction spectra and (b) photo images of the annealed TiOx/FQ at (1) 100, (2) 150, (3) 200, (4) 250, (5) 300, (6) 350, (7) 400 and (8) 450 °C in H2/Ar atmosphere.
Fig. 2
Fig. 2 Raman spectra of annealed titanium oxide films deposited on fused quartz glass. Raman spectra are (a), in the low wave number region, showing features related to titanium dioxide and (b), in high wave number region, showing features (D, G band) related to graphitic carbon materials. (c) The intensity ratio (□) of D band to G band and position (△) of G band of annealed TiOx/FQ as a function of annealing temperature. (d) The calculated in-plane crystalline length (LG) of carbon for the annealed TiOx/FQ above 150 °C.
Fig. 3
Fig. 3 Normalized ion depth profiles of (a) C+, Si+, Ti+ and (b) O+ of annealed TiOx thin films on fused quartz glass substrates at 100, 150, 200, 250, 300, 350, 400 and 450 °C.
Fig. 4
Fig. 4 Optical transmittance spectra of TiOx thin films deposited on fused quartz glass substrates before (black line) and after (red line) annealed in H2/Ar atmosphere at (a) 100, (b) 150, (c) 200, (d) 250, (e) 300, (f) 350, (g) 400 and (h) 450 °C. For comparison, the transmittance spectra of bare quartz substrates are also shown.
Fig. 5
Fig. 5 Real part ((a), (b)) and imaginary part ((c), (d)) of annealed TiOx/FQ dielectric constants in H2/Ar atmosphere at (a), (c) 100, 150, 200, 250, (b), (d) 300, 350, 400 and 450 °C, respectively. For comparison, the real and imaginary part of dielectric constants of titanium dioxide thin films (gray) are plotted in (b) and (d) [42].
Fig. 6
Fig. 6 Imaginary part of oscillator dependent dielectric constants of TiOxCy extracted from the optical modeling of annealed TiOx/FQ at (a) 100 (solid), 150 (dashed-dotted), 200 (dotted), and 250°C (dashed), at (b) 300 (solid), 350 (dashed-dotted), 400 (dotted) and 450 °C (dashed). ω1, ω2, ω3 and ω4 oscillators are colored by black, red, green and blue, respectively.
Fig. 7
Fig. 7 (a) The volume fraction and (b) screening factor of TiO2 extracted from BR-EMT model before (black) and after (red) annealing process as listed in Table 1 and 2, respectively.
Fig. 8
Fig. 8 The dimension is defined as 500 × 500 × 100 nm3 and thickness of FQ substrates (SiO2) is limited as 14 nm. For a TiO2 ellipsoid, length r1, r2 and r3 are radius and the ratio of r1to r2 is 0.946 based on the results of BR-EMT model and the radius r1 is 10.5 nm (based on the XRD). For the size of air shell structure, additional length, α is added to all axes.
Fig. 9
Fig. 9 Replot of the optical transmittance spectra of TiOx/FQ annealed at 400 °C shown in Fig. 4(g) (black continuous lines). The simulated transmittance spectra (open circle) using three-dimensional FDTD with varying (a) void size and (b) the number of TiO2 particles, respectively. For comparison, the simulated results of the mediums that only consist of TiO2 ( × ) or TiOxCy (red open circle) are plotted also shown in (a) and (b), respectively.

Tables (2)

Tables Icon

Table 1 The BR-EMT optical simulation parameters for the 8 as-deposited TiOx/FQ samples.

Tables Icon

Table 2 The BR-EMT optical simulation parameters for the 8 annealed TiOx/FQ samples at various temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε eff = m+ m 2 4go 2g

Metrics