Abstract

We report the evidence of post-annealing-induced phase transition in zinc phthalocyanine (ZnPc) ultrathin (~20 nm) films upon annealing at 200 °C. The signatures of phase transition are observed in their morphological, structural, and ultrafast spectroscopic properties. X-ray diffraction measurement shows that α-phase nanospheres transform to β-phase nanorods that have a high degree of crystallinity with an excellent ordering along the c-direction in a monoclinic arrangement. Tight packing of molecules in the β-crystallites allows a red-shift and intensity gain of the lowest-energy subband in the Q-band and subsequently increases the electronic coupling in both intercolumn and intracolumn paths.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropic exciton relaxation in nanostructured metal (Zn and F16Zn)-phthalocyanine

Hyeyoung Ahn, Wei-Hyun Liou, Huang-Ming Philip Chen, and Chia-Hung Hsu
Opt. Express 23(3) 3230-3235 (2015)

Effect of annealing temperature on the structure and properties of vanadium oxide films

Yueyan Liu, Juncheng Liu, Yuanbao Li, Danping Wang, Lin Ren, and Kaishun Zou
Opt. Mater. Express 6(5) 1552-1560 (2016)

Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures

Bin Wang, Hongji Qi, Hu Wang, Yanyan Cui, Jiaoling Zhao, Jialu Guo, Yun Cui, Youchen Liu, Kui Yi, and Jianda Shao
Opt. Mater. Express 5(6) 1410-1418 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
    [Crossref]
  2. A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
    [Crossref]
  3. V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
    [Crossref]
  4. L. Howe and J. Z. Zhang, “Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution,” J. Phys. Chem. A 101(18), 3207–3213 (1997).
    [Crossref]
  5. J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
    [Crossref]
  6. S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
    [Crossref]
  7. M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
    [Crossref]
  8. H. Ahn, W.-H. Liou, H.-M. Chen, and C.-H. Hsu, “Anisotropic exciton relaxation in nanostructured metal (Zn and F(16)Zn)-phthalocyanine,” Opt. Express 23(3), 3230–3235 (2015).
    [Crossref] [PubMed]
  9. A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
    [Crossref]
  10. D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
    [Crossref]
  11. X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
    [Crossref] [PubMed]
  12. S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
    [Crossref]
  13. H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149(2), 129–142 (1987).
    [Crossref]
  14. A. Stradomska and J. Knoester, “Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?” J. Chem. Phys. 133(9), 094701 (2010).
    [Crossref] [PubMed]
  15. N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
    [Crossref]
  16. JCPDS-ICDD stands for the joint committee on powder diffraction standards-the international center for diffraction data.
  17. M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. copper phthalocyanine,” J. Vac. Sci. Technol. A 10(4), 2816–2821 (1992).
    [Crossref]
  18. F. H. Moser and A. L. Thomas, Phthalocyanine Compounds, ACS Monograph Series 157, American Chemical Society: New York (1963).
  19. R. O. Loutfy, “Bulk optical properties of phthalocyanine pigment particles,” Can. J. Chem. 59(3), 549–554 (1981).
    [Crossref]
  20. G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
    [Crossref]
  21. S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
    [Crossref]
  22. L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
    [Crossref]
  23. S. V. Rao and D. N. Rao, “Excited state dynamics in phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyanines 6(03), 233–237 (2002).
    [Crossref]
  24. H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
    [Crossref]
  25. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
    [Crossref] [PubMed]

2015 (2)

H. Ahn, W.-H. Liou, H.-M. Chen, and C.-H. Hsu, “Anisotropic exciton relaxation in nanostructured metal (Zn and F(16)Zn)-phthalocyanine,” Opt. Express 23(3), 3230–3235 (2015).
[Crossref] [PubMed]

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

2014 (1)

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

2013 (1)

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

2012 (2)

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

2011 (1)

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

2010 (1)

A. Stradomska and J. Knoester, “Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?” J. Chem. Phys. 133(9), 094701 (2010).
[Crossref] [PubMed]

2009 (1)

L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
[Crossref]

2007 (1)

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

2004 (1)

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

2002 (2)

S. V. Rao and D. N. Rao, “Excited state dynamics in phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyanines 6(03), 233–237 (2002).
[Crossref]

S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
[Crossref]

2000 (1)

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

1998 (1)

G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
[Crossref]

1997 (1)

L. Howe and J. Z. Zhang, “Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution,” J. Phys. Chem. A 101(18), 3207–3213 (1997).
[Crossref]

1996 (1)

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

1995 (1)

N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
[Crossref]

1992 (3)

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. copper phthalocyanine,” J. Vac. Sci. Technol. A 10(4), 2816–2821 (1992).
[Crossref]

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

1987 (1)

H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149(2), 129–142 (1987).
[Crossref]

1981 (1)

R. O. Loutfy, “Bulk optical properties of phthalocyanine pigment particles,” Can. J. Chem. 59(3), 549–554 (1981).
[Crossref]

Abramczyk, H.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

Ahn, H.

Armstrong, N. R.

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

Aspuru-Guzik, A.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Atahan-Evrenk, S.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Bala, W.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Bao, Z.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Bayliss, S. M.

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

Becerril, H. A.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Biswas, B.

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Bratkowski, A.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Brozek-Pluska, B.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

Chachisvilis, M.

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

Chang, H.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Chen, H.-M.

Chowdhury, A.

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Das, N. M.

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

Debe, M. K.

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. copper phthalocyanine,” J. Vac. Sci. Technol. A 10(4), 2816–2821 (1992).
[Crossref]

Drozdowski, M.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Freysz, E.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

Fukuda, T.

N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
[Crossref]

Garito, A. F.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Germain, J. P.

G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
[Crossref]

Ghosh, R.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Giri, G.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Grodzicki, A.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Gu, L.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Guillaud, G.

G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
[Crossref]

Gulbinas, V.

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

Gupta, P. S.

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

He, X.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Heiland, G.

H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149(2), 129–142 (1987).
[Crossref]

Heutz, H.

S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
[Crossref]

Heutz, S.

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

Ho, Z. Z.

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

Hosoda, M.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Howe, L.

L. Howe and J. Z. Zhang, “Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution,” J. Phys. Chem. A 101(18), 3207–3213 (1997).
[Crossref]

Hsu, C.-H.

Huijser, A.

L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
[Crossref]

Jones, T. S.

S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
[Crossref]

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

Kakade, S.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Kim, D. H.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Knoester, J.

A. Stradomska and J. Knoester, “Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?” J. Chem. Phys. 133(9), 094701 (2010).
[Crossref] [PubMed]

Kobayashi, N.

N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
[Crossref]

Kobayashi, T.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Koma, A.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Laurs, H.

H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149(2), 129–142 (1987).
[Crossref]

Lee, S. Y.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Lelievre, D.

N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
[Crossref]

Li, B.

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

Liou, W.-H.

Loutfy, R. O.

R. O. Loutfy, “Bulk optical properties of phthalocyanine pigment particles,” Can. J. Chem. 59(3), 549–554 (1981).
[Crossref]

Majumder, M.

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Mallik, B.

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Mannsfeld, S. C. B.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Mazumda, S.

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

Meng, Q.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Mi, J.

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

Middleton, R. L.

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

Palit, D. K.

S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

Peygharmbarian, N.

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

Piszczek, P.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Qian, S.

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

Rao, D. N.

S. V. Rao and D. N. Rao, “Excited state dynamics in phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyanines 6(03), 233–237 (2002).
[Crossref]

Rao, S. V.

S. V. Rao and D. N. Rao, “Excited state dynamics in phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyanines 6(03), 233–237 (2002).
[Crossref]

Roy, D.

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

Rumbles, G.

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

Runka, T.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Sanyal, M. K.

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Sasabe, H.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Savenije, T. J.

L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
[Crossref]

Shakti, N.

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

Shi, J.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Siebbeles, L. D. A.

L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
[Crossref]

Simon, J.

G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
[Crossref]

Stradomska, A.

A. Stradomska and J. Knoester, “Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?” J. Chem. Phys. 133(9), 094701 (2010).
[Crossref] [PubMed]

Sundstrom, V.

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

Szybowicz, M.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Tada, H.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Terasaki, A.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Tondusson, M.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

Toney, M. F.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Valkunas, L.

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

Verploegen, E.

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Wada, T.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Wang, Z.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Weng, Y.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Williams, V. S.

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

Wojdyla, M.

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

Yamada, A.

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

Yan, D.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Yang, J.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Yim, S.

S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
[Crossref]

Yue, S.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Zhang, J. Z.

L. Howe and J. Z. Zhang, “Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution,” J. Phys. Chem. A 101(18), 3207–3213 (1997).
[Crossref]

Zhao, H.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

Zhou, X.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Zhu, G.

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Zhu, R.

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

Can. J. Chem. (1)

R. O. Loutfy, “Bulk optical properties of phthalocyanine pigment particles,” Can. J. Chem. 59(3), 549–554 (1981).
[Crossref]

Coord. Chem. Rev. (1)

G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors,” Coord. Chem. Rev. 178–180, 1433–1484 (1998).
[Crossref]

J. Appl. Phys. (1)

S. Yim, H. Heutz, and T. S. Jones, “Model for the α→β1 phase transition in phthalocyanine thin films,” J. Appl. Phys. 91(6), 3632–3636 (2002).
[Crossref]

J. Chem. Phys. (1)

A. Stradomska and J. Knoester, “Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?” J. Chem. Phys. 133(9), 094701 (2010).
[Crossref] [PubMed]

J. Mater. Chem. (1)

L. D. A. Siebbeles, A. Huijser, and T. J. Savenije, “Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules,” J. Mater. Chem. 19(34), 6067–6072 (2009).
[Crossref]

J. Mol. Struct. (1)

M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, M. Wojdyła, A. Grodzicki, P. Piszczek, and A. Bratkowski, “Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate,” J. Mol. Struct. 830(1-3), 14–20 (2007).
[Crossref]

J. Phys. Chem. (4)

V. S. Williams, S. Mazumda, N. R. Armstrong, Z. Z. Ho, and N. Peygharmbarian, “Femtosecond excited-state dynamics in fluoro- and chloroaluminum phthalocyanine thin films,” J. Phys. Chem. 96, 4500 (1992).
[Crossref]

A. Terasaki, M. Hosoda, T. Wada, H. Tada, A. Koma, A. Yamada, H. Sasabe, A. F. Garito, and T. Kobayashi, “Femtosecond spectroscopy of vanadyi phthalocyanines in various molecular arrangements,” J. Phys. Chem. 96(25), 10534–10542 (1992).
[Crossref]

V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundstrom, “Excited state dynamics of phthalocyanine films,” J. Phys. Chem. 100(6), 2213–2219 (1996).
[Crossref]

N. Kobayashi, T. Fukuda, and D. Lelievre, “Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of ZnPc(-2) Recorded at Cryogenic Temperatures,” J. Phys. Chem. 99, 7935–7945 (1995).
[Crossref]

J. Phys. Chem. A (1)

L. Howe and J. Z. Zhang, “Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution,” J. Phys. Chem. A 101(18), 3207–3213 (1997).
[Crossref]

J. Phys. Chem. B (1)

S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, “Polymorphism in phthalocyanine thin films: Mechanism of the α→β transition,” J. Phys. Chem. B 104(30), 7124–7129 (2000).
[Crossref]

J. Phys. Chem. C (2)

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast dynamics of metal complexes of tetrasulfonated phthalocyanines at biological interfaces: Comparison between photochemistry in solutions, films, and noncancerous and cancerous human breast tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
[Crossref]

S. Kakade, R. Ghosh, and D. K. Palit, “Excited state dynamics of Zinc−phthalocyanine nanoaggregates in strong hydrogen bonding solvents,” J. Phys. Chem. C 116(28), 15155–15166 (2012).
[Crossref]

J. Porphyr. Phthalocyanines (1)

S. V. Rao and D. N. Rao, “Excited state dynamics in phthalocyanines studied using degenerate four wave mixing with incoherent light,” J. Porphyr. Phthalocyanines 6(03), 233–237 (2002).
[Crossref]

J. Vac. Sci. Technol. A (1)

M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. copper phthalocyanine,” J. Vac. Sci. Technol. A 10(4), 2816–2821 (1992).
[Crossref]

Nature (1)

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, “Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504–508 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

J. Zhou, J. Mi, R. Zhu, B. Li, and S. Qian, “Ultrafast excitation relaxation in titanylphthalocyanine thin film,” Opt. Mater. 27(3), 377–382 (2004).
[Crossref]

RSC Advances (1)

D. Roy, N. M. Das, N. Shakti, and P. S. Gupta, “Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing,” RSC Advances 4(80), 42514–42522 (2014).
[Crossref]

Sci. Rep. (1)

X. He, G. Zhu, J. Yang, H. Chang, Q. Meng, H. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. Yan, and Y. Weng, “Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy,” Sci. Rep. 5, 17076 (2015).
[Crossref] [PubMed]

Thin Solid Films (2)

H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149(2), 129–142 (1987).
[Crossref]

A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal, and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures,” Thin Solid Films 520(21), 6695–6704 (2012).
[Crossref]

Other (2)

F. H. Moser and A. L. Thomas, Phthalocyanine Compounds, ACS Monograph Series 157, American Chemical Society: New York (1963).

JCPDS-ICDD stands for the joint committee on powder diffraction standards-the international center for diffraction data.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 FESEM images (a)-(c) and absorption spectra (d)-(f) of 20 nm-thick ZnPc films, as-deposited and annealed at 150 and 200 °C. The 50-nm thick film shows similar morphology and absorption responses. Red solid lines in Fig. 1(d)-(f) are results of multipeak fitting.
Fig. 2
Fig. 2 X-ray diffraction curves of ZnPc films as-deposited and annealed at different temperatures in the directions normal- (a) and parallel (b) to the substrate plane, respectively. Inset in (a) is the temperature dependence of the position and FWHM of out-of-plane peak and the one in (b) is the XRD curve at larger q. (c) Half-circle XRD pattern for ZnPc-(200). (d) Schematics of unit cells packing in α-form and β-form ZnPcs.
Fig. 3
Fig. 3 (a) Annealing temperature dependence of the normalized DT at 740 nm. Inset: time constant vs. wavelength for the films as-deposited (solid circles), and annealed at 150 °C (open squares) and 200 °C (open circles). Pink solid squares correspond to τ0 of ZnPc-(150). (b) Probe wavelength dependence of the ZnPc-(200) film. Inset: Polarization dependence of normalized DT for films as-deposited and annealed at 200 °C.
Fig. 4
Fig. 4 DT spectra at discrete time intervals (a)–(c) and 1/DT measured at 700 nm (d)–(f) for the films as-deposited, and annealed at 150 and 200 °C, respectively. Solid lines are linear fit to 1/DT at 700 nm.

Metrics