Abstract

Ultraviolet (UV) ozonation is employed for making graphene photoluminescent. We find that photoluminescence (PL) varies with the ozonation temperature. For room-temperature ozonized few-layer graphene (FLG), PL is localized at the edges and in the suspended areas of FLG. At an ozonation temperature of 120 °C, PL localized at the edges of FLG disappears, and the surface of trilayer graphene becomes luminescent. These graphene flakes are topographically and chemically characterized to understand the origin of PL. We propose that sp2 clusters play a key role in making graphene photoluminescent, and that intact carbon layers and charged impurities at the surface of silicon oxide substrate may quench PL.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anomalous photoluminescence thermal quenching of sandwiched single layer MoS2

Malleswararao Tangi, Mohammad Khaled Shakfa, Pawan Mishra, Ming-Yang Li, Ming-Hui Chiu, Tien Khee Ng, Lain-Jong Li, and Boon S. Ooi
Opt. Mater. Express 7(10) 3697-3705 (2017)

Effect of UV irradiation on photoluminescence of carbon dots

Dezhi Tan, Shifeng Zhou, Yasuhiko Shimotsuma, Kiyotaka Miura, and Jianrong Qiu
Opt. Mater. Express 4(2) 213-219 (2014)

Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer

Ilaria Rea, Maurizio Casalino, Monica Terracciano, Lucia Sansone, Jane Politi, and Luca De Stefano
Opt. Express 24(21) 24413-24421 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref] [PubMed]
  2. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
    [Crossref]
  3. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
    [Crossref] [PubMed]
  4. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  5. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
    [Crossref] [PubMed]
  6. N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
    [Crossref] [PubMed]
  7. S. K. Pal, “Versatile photoluminescence from graphene and its derivatives,” Carbon 88, 86–112 (2015).
    [Crossref]
  8. Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
    [Crossref] [PubMed]
  9. C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
    [Crossref] [PubMed]
  10. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
    [Crossref] [PubMed]
  11. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
    [Crossref] [PubMed]
  12. S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
    [Crossref] [PubMed]
  13. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
    [Crossref] [PubMed]
  14. M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
    [Crossref] [PubMed]
  15. H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
    [Crossref] [PubMed]
  16. T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
    [Crossref] [PubMed]
  17. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
    [Crossref]
  18. A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
    [Crossref] [PubMed]
  19. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
    [Crossref] [PubMed]
  20. T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
    [Crossref] [PubMed]
  21. L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
    [Crossref] [PubMed]
  22. Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
    [Crossref] [PubMed]
  23. D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
    [Crossref] [PubMed]
  24. I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
    [Crossref]
  25. J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
    [Crossref]
  26. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
    [Crossref] [PubMed]
  27. Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
    [Crossref]
  28. W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
    [Crossref]
  29. Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
    [Crossref]
  30. Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
    [Crossref]
  31. N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
    [Crossref] [PubMed]
  32. H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
    [Crossref]
  33. J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
    [Crossref]
  34. W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
    [Crossref]
  35. D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
    [Crossref]
  36. Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
    [Crossref] [PubMed]
  37. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
    [Crossref] [PubMed]
  38. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  39. R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
    [Crossref]
  40. H. Estrade-Szwarckopf, “XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak,” Carbon 42(8-9), 1713–1721 (2004).
    [Crossref]
  41. J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
    [Crossref] [PubMed]
  42. J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
    [Crossref] [PubMed]
  43. Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
    [Crossref] [PubMed]
  44. X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
    [Crossref]
  45. X.-F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
    [Crossref]
  46. K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
    [Crossref]
  47. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
    [Crossref] [PubMed]
  48. S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
    [Crossref] [PubMed]
  49. J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
    [Crossref] [PubMed]
  50. F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
    [Crossref] [PubMed]
  51. S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
    [Crossref] [PubMed]

2016 (2)

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

2015 (9)

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

S. K. Pal, “Versatile photoluminescence from graphene and its derivatives,” Carbon 88, 86–112 (2015).
[Crossref]

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
[Crossref]

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

2013 (8)

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
[Crossref] [PubMed]

2012 (6)

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

2011 (4)

X.-F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

2010 (5)

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

2009 (6)

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

2008 (2)

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

2007 (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

2004 (1)

H. Estrade-Szwarckopf, “XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak,” Carbon 42(8-9), 1713–1721 (2004).
[Crossref]

2001 (1)

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

1996 (1)

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

1985 (1)

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[Crossref]

Alsina, F.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Alzina, F.

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

Aono, M.

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

Bachtold, A.

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Badioli, M.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Baldereschi, A.

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

Bao, W.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

Berciaud, S.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Bertóti, I.

I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
[Crossref]

Böhmler, M.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Bonetti, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Brus, L. E.

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Bunch, J. S.

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Centeno, A.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Cesca, T.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Charlier, J.-C.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Chen, C.-W.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, H.-A.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, I.-S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chen, J.-Y.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Chen, K.-H.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Chen, L.-C.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Chen, M.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Chen, T.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Chen, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Chen, Y.-F.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Cheng, G.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Cheng, H.-M.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Cheng, S.-H.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Cheng, Y. C.

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

Cheng, Z.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Chhowalla, M.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Chien, C.-T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Chim, C.-Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Chung, H.-J.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Comin, F.

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

Cong, C.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Coop, S.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Cote, L. J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Cruz-Silva, R.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Cui, D.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Dai, H.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

de Riedmatten, H.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Deng, L.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Díaz, J.

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

Ding, H.

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Dong, C.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Doudin, B.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Du, J.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Dubertret, B.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Eda, G.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Elías, A. L.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Estrade-Szwarckopf, H.

H. Estrade-Szwarckopf, “XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak,” Carbon 42(8-9), 1713–1721 (2004).
[Crossref]

Exarhos, A. L.

A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
[Crossref] [PubMed]

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Federspiel, F.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Ferrari, A. C.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ferrer, S.

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

Ferrier, A.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Flynn, G. W.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Froehlicher, G.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Fujita, T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

García de Abajo, F. J.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Garcia de Arquer, F. P.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gaudreau, L.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Geim, A. K.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Gilliot, P.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Gokus, T.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Goldner, P.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Goodwin, A.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Guan, G.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Gundlach, D. J.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Guo, X.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Guo, X. T.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Hacker, C. A.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Haerle, R.

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

Halley, D.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Hartschuh, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Heinz, T. F.

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

Horita, M.

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Hou, J. G.

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

Hou, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Hu, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Huang, G.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Huang, J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Hybertsen, M. S.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Ichii, T.

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

Ishikawa, Y.

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Isoda, S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Jarillo-Herrero, P.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Jeon, D.-Y.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Johnson, A. T. C.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Ju, L.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

Jung, N.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Kalinic, B.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Kaloni, T. P.

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Kikkawa, J. M.

A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
[Crossref] [PubMed]

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Kim, D. C.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Koenig, S. P.

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

Koh, S.

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Lai, W.-J.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

László, K.

I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Leconte, N.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Lee, J.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

Lee, J.-O.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Lherbier, A.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Li, B.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Li, C.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Li, Q.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Li, S.-S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, W.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Li, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Li, Z.

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

Liang, X.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Liang, Y.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Liao, C. Y.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Lin, Y.-Y.

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Liu, B.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Liu, D.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Liu, L.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Liu, W. J.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Liu, X.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Liu, X. B.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Liu, Y.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Liu, Z.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Lombardo, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Lu, M.-L.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Lu, Q.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Lu, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Luo, Y.

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

Luo, Z.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Lv, R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Ma, L.-P.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Ma, Q.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Mahmood, A.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mattevi, C.

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mei, Q.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Mei, Y.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Mele, E. J.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mohai, M.

I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
[Crossref]

Moser, J.

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Mulyana, Y.

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Nair, R. R.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Nan, H. Y.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Nanot, S.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Nasilowski, M.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Navickaite, G.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Nemoto, T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Ni, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Ni, Z. H.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Novoselov, K. S.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ordejón, P.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Orona, L.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Pal, S. K.

S. K. Pal, “Versatile photoluminescence from graphene and its derivatives,” Carbon 88, 86–112 (2015).
[Crossref]

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Paolicelli, G.

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

Park, S.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Pasquarello, A.

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

Pedetti, S.

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

Pei, S.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Peimyoo, N.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Pellegrino, J.

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

Peng, L.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Perea-López, N.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Pernstich, K. P.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Pesquera, A.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Qu, L.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Qu, S.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Ren, M.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Ren, W.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Richter, C. A.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Riedo, E.

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

Robinson, J. T.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Roche, S.

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ryu, S.

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Schuck, P. J.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

Schwingenschlögl, U.

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

Seo, S.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Shang, J.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Shen, G.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Shen, T.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Shen, X.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Shen, Z. X.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Shi, D.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Shi, G.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Shi, Z.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Shin, J. K.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Sotomayor Torres, C. M.

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

Sotomayor-Torres, C. M.

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Steigerwald, M. L.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Stolyarova, E.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Su, Y.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Sugimura, H.

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, X.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Sun, X. W.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Tan, W.-C.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Tao, H.

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

Terabe, K.

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

Terrones, H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Terrones, M.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Tielrooij, K. J.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Tomasik, M. R.

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Tran, X. A.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Tsuchiya, T.

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

Tsuruoka, T.

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

Tu, Y.

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

Turk, M. E.

A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
[Crossref] [PubMed]

Uenuma, M.

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

Uraoka, Y.

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Utsunomiya, T.

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

Vig, J. R.

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[Crossref]

Vora, P. M.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Walker, A. R. H.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Wang, B.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Wang, E.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Wang, F.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Wang, K.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Wang, L.

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Wang, Q.

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

Wang, S.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Wang, W. H.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Wang, X.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Wang, Y.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Weber-Bargioni, A.

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

Wei, J.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Wei, J.-S.

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Welsher, K.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Weng, T.-M.

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Wong, Z. J.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Woo, Y.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Wu, P.

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Wu, X.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Xi, Q.

X.-F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

Xiong, H.-M.

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Yamaguchi, H.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yang, D.-P.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Yang, J.

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

Yang, R.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Yeh, Y.-C.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Yeow, E. K. L.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Yu, D.

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

Yu, H. Y.

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

Yu, S.-B.

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

Yu, T.

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Zaric, S.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Zhang, G.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Zhang, K.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Zhang, L.

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Zhang, W.

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

Zhang, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Zhang, X.-F.

X.-F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

Zhang, Y.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Zhang, Z.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

Zhao, W. W.

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Zhao, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Zhi, X.

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Zhu, H.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Zhu, Z. Y.

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

Zurutuza, A.

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, “Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide,” ACS Appl. Mater. Interfaces 8(16), 10627–10635 (2016).
[Crossref] [PubMed]

ACS Nano (6)

N. Leconte, J. Moser, P. Ordejón, H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. Sotomayor Torres, J.-C. Charlier, and S. Roche, “Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition,” ACS Nano 4(7), 4033–4038 (2010).
[Crossref] [PubMed]

T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano 9(2), 2102–2110 (2015).
[Crossref] [PubMed]

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano 10(1), 484–491 (2016).
[Crossref] [PubMed]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

J. Yuan, L.-P. Ma, S. Pei, J. Du, Y. Su, W. Ren, and H.-M. Cheng, “Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes,” ACS Nano 7(5), 4233–4241 (2013).
[Crossref] [PubMed]

Adv. Mater. (3)

G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref] [PubMed]

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self-aligned anisotropic etching,” Adv. Mater. 23(27), 3061–3065 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl. 51(27), 6662–6666 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, “Oxidation of graphene in ozone under ultraviolet light,” Appl. Phys. Lett. 101(7), 073110 (2012).
[Crossref]

W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,” Appl. Phys. Lett. 102(18), 183110 (2013).
[Crossref]

X. T. Guo, Z. H. Ni, C. Y. Liao, H. Y. Nan, Y. Zhang, W. W. Zhao, and W. H. Wang, “Fluorescence quenching of CdSe quantum dots on graphene,” Appl. Phys. Lett. 103(20), 201909 (2013).
[Crossref]

Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh, “Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene,” Appl. Phys. Lett. 103(6), 063107 (2013).
[Crossref]

Carbon (4)

H. Estrade-Szwarckopf, “XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak,” Carbon 42(8-9), 1713–1721 (2004).
[Crossref]

X.-F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

I. Bertóti, M. Mohai, and K. László, “Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy,” Carbon 84, 185–196 (2015).
[Crossref]

S. K. Pal, “Versatile photoluminescence from graphene and its derivatives,” Carbon 88, 86–112 (2015).
[Crossref]

Chem. Commun. (Camb.) (1)

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.) 46(39), 7319–7321 (2010).
[Crossref] [PubMed]

ECS Solid State Lett. (1)

W. J. Liu, X. A. Tran, X. B. Liu, J. Wei, H. Y. Yu, and X. W. Sun, “Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment,” ECS Solid State Lett. 2(1), M1–M4 (2012).
[Crossref]

J. Am. Chem. Soc. (2)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “How graphene is cut upon oxidation?” J. Am. Chem. Soc. 131(18), 6320–6321 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (3)

D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies,” J. Phys. Chem. C 118(1), 725–731 (2014).
[Crossref]

Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible oxidation of graphene through ultraviolet/ozone treatment and its nonthermal reduction through ultraviolet irradiation,” J. Phys. Chem. C 118(47), 27372–27381 (2014).
[Crossref]

H. Tao, J. Moser, F. Alzina, Q. Wang, and C. M. Sotomayor-Torres, “The morphology of graphene sheets treated in an ozone generator,” J. Phys. Chem. C 115(37), 18257–18260 (2011).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).
[Crossref]

Nano Lett. (8)

L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett. 8(7), 1965–1970 (2008).
[Crossref] [PubMed]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

A. L. Exarhos, M. E. Turk, and J. M. Kikkawa, “Ultrafast spectral migration of photoluminescence in graphene oxide,” Nano Lett. 13(2), 344–349 (2013).
[Crossref] [PubMed]

J. Lee, W. Bao, L. Ju, P. J. Schuck, F. Wang, and A. Weber-Bargioni, “Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene,” Nano Lett. 14(12), 7115–7119 (2014).
[Crossref] [PubMed]

F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, “Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene,” Nano Lett. 15(2), 1252–1258 (2015).
[Crossref] [PubMed]

S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9(1), 346–352 (2009).
[Crossref] [PubMed]

Nano Res. (1)

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res. 1(3), 203–212 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, “Selective molecular sieving through porous graphene,” Nat. Nanotechnol. 7(11), 728–732 (2012).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Nat. Phys. (1)

K. J. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B. Kalinic, T. Cesca, L. Gaudreau, Q. Ma, A. Centeno, A. Pesquera, A. Zurutuza, H. de Riedmatten, P. Goldner, F. J. García de Abajo, P. Jarillo-Herrero, and F. H. L. Koppens, “Electrical control of optical emitter relaxation pathways enabled by graphene,” Nat. Phys. 11(3), 281–287 (2015).
[Crossref]

Nature (1)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, and X. Liu, “Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation,” Phys. Chem. Chem. Phys. 17(37), 24056–24062 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81(20), 205445 (2010).
[Crossref]

R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, “sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation,” Phys. Rev. B 65(4), 045101 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Phys. Rev. B Condens. Matter 54(11), 8064–8069 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, and Y.-F. Chen, “All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene,” Sci. Rep. 3, 2694 (2013).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (12475 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Optical image of a graphene sheet composed of bilayer and FLG flakes, and (b) its CLSM image excited at 364 nm after room temperature ozonation; SEM images of (c) FLG edge, (d) FLG step (close to the fully suspended FLG region), (e) and the fully suspended FLG region with clusters as indicated by the red arrow and (f) its zoomed in image. Note: a false blue colour was preset for CLSM imaging under excitation of the 364 nm laser.
Fig. 2
Fig. 2 (a) AFM image of the room-temperature ozonized monolayer graphene, and (b) its confocal Raman spectrum under excitation of 514 nm laser; (c) PL spectrum collected from the edges of room-temperature ozonized FLGs under the excitation of 325 nm laser.
Fig. 3
Fig. 3 PL characteristics of high-temperature (120 °C) ozonized FLGs flake. (a) Optical image (inset) and its fluorescence microscope image under UV excitation at 365 nm from a high pressure Hg lamp. SEM images of (b) the FLGs flake and its zoom-in picture focusing on (c) edges around the top left corner, and (d) step between FLG and trilayer graphene as highlighted by two red frames in (b).
Fig. 4
Fig. 4 AFM images of FLGs ozonized at (a) room temperature, and (b) 120 °C with the initial oxygen pressure fixed at 96.3 kPa.
Fig. 5
Fig. 5 Comparison of XPS spectra for freshly cleaved Kish graphite, and room- and high-temperature (120 °C) ozonized ones. XPS highly resolved narrow band (a) O1s and (b) C1s spectra of freshly cleaved, room- and high-temperature ozonized Kish graphite (denoted as Fresh, RT Ozonation, and HT Ozonation in turn in the graphs). Highly resolved C1s spectra of (c) room-temperature and (d) high-temperature ozonized Kish graphite flakes fitted with four mixed Gaussian-Lorentzian curves. CPS stands for count per second.
Fig. 6
Fig. 6 (a) Schematically illustrating UV ozonation process of graphene; PL mechanism and two major quenching factors, i.e., (b) intact carbon layer and (c) charged impurities at the SiO2 surface for room- and high-temperature (denoted as RT and HT) ozonized graphene nanostructures.
Fig. 7
Fig. 7 Raman spectra of the micro-cleaved monolayer and bilayer graphene flakes excited at 514 nm laser.
Fig. 8
Fig. 8 Simplified schematic structure of our home-made double-chamber UV ozonation vacuum machine.
Fig. 9
Fig. 9 (a) Optical image of a graphite flake, and (b) its fluorescence image under UV excitation at 365 nm from a high pressure Hg lamp; SEM images focusing on (c) a step in the central area, and (d) an edge on the left.
Fig. 10
Fig. 10 (a) Optical image of the FLG microflakes used for PL spectrum measurement after room-temperature ozonation, and (b) the corresponding confocal laser scanning microscope image under excitation of the 364 nm laser. Note: a false color blue was preset for PL emission under the UV excitation.
Fig. 11
Fig. 11 Comparison of XPS survey spectra for freshly cleaved Kish graphite and room-/ high-temperature (120 °C) ozonized ones (denoted as Fresh, RT Ozonation, and HT Ozonation in turn).

Metrics