Abstract

This paper describes a technique using a hot isostatic pressing (HIP) for the diffusion of transition metal ions into chalcogenide laser host crystals. Thin layers of chromium metal are sputtered onto the surface of zinc selenide and zinc sulfide crystals before treatment in a HIP chamber. The transmissivities, excited state lifetimes, and diffusion rates are measured for various dopant concentrations. Efficiency, spectral output, and tuning data are also measured for a Cr:ZnSe laser. The diffusion rate of 5.48 × 10−8 cm2/s is two orders of magnitude faster than other techniques reported in the literature, and the sub 140 pm measured linewidth is more than 350 times smaller than what is typical of commercially available crystals. Preliminary results for Fe:ZnSe, Co:ZnSe, and Ni:ZnSe are presented as well.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the performance of an Fe:ZnSe laser using a hot isostatic press

Jonathan W. Evans, Ronald W. Stites, and Thomas R. Harris
Opt. Mater. Express 7(12) 4296-4303 (2017)

Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing

Ozarfar Gafarov, Alan Martinez, Vladimir Fedorov, and Sergey Mirov
Opt. Mater. Express 7(1) 25-31 (2017)

Hot-pressed ceramic Cr2+:ZnSe gain-switched laser

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants
Opt. Express 14(24) 11694-11701 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M Ebrahim-Zadeh and I. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2005).
  2. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
    [Crossref]
  3. T. J. Carrig, “Transition-metal doped chalcogenide lasers,” J. Electron. Mat. 31(7), 759–769 (2002).
    [Crossref]
  4. S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II–VI materials and lasers,” Opt. Mater. Express 1(5), 898–970 (2011).
    [Crossref]
  5. C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
    [Crossref]
  6. M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
    [Crossref]
  7. O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
    [Crossref]
  8. A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr2+:ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
    [Crossref] [PubMed]
  9. J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
    [Crossref]
  10. U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
    [Crossref]
  11. U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
    [Crossref]
  12. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010).
    [Crossref] [PubMed]
  13. G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.
  14. H. V. Atkinson and S. Davies, “Fundamental aspects of hot isostatic pressing: an overview,” Metal. and Mater. Transactions A 31A, 2981–3000 (2000).
    [Crossref]
  15. H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).
  16. M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
    [Crossref]
  17. A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79(7), 1927–1933 (1996).
    [Crossref]
  18. M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
    [Crossref]
  19. B. J. Skinner and P. B. Barton, “The substitution of oxygen for sulfur in wurtzite and sphalerite,” Am. Min. 45, 612–625 (1960).
  20. M. Tsuboi, “Optically active lattice vibrations of zinc blende type and wurtzite type crystals,” J. Chem. Phys. 40(5), 1326–1335 (1964).
    [Crossref]
  21. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26, 395–412 (2004).
    [Crossref]
  22. A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
    [Crossref]

2014 (1)

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

2011 (1)

2010 (2)

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010).
[Crossref] [PubMed]

2007 (1)

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

2006 (3)

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr2+:ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[Crossref] [PubMed]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
[Crossref]

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

2004 (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26, 395–412 (2004).
[Crossref]

2002 (3)

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

T. J. Carrig, “Transition-metal doped chalcogenide lasers,” J. Electron. Mat. 31(7), 759–769 (2002).
[Crossref]

2001 (1)

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

2000 (1)

H. V. Atkinson and S. Davies, “Fundamental aspects of hot isostatic pressing: an overview,” Metal. and Mater. Transactions A 31A, 2981–3000 (2000).
[Crossref]

1999 (1)

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

1996 (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79(7), 1927–1933 (1996).
[Crossref]

1964 (1)

M. Tsuboi, “Optically active lattice vibrations of zinc blende type and wurtzite type crystals,” J. Chem. Phys. 40(5), 1326–1335 (1964).
[Crossref]

1960 (1)

B. J. Skinner and P. B. Barton, “The substitution of oxygen for sulfur in wurtzite and sphalerite,” Am. Min. 45, 612–625 (1960).

Adetunji, O. O.

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

Alford, W. J.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.

Atkinson, H. V.

H. V. Atkinson and S. Davies, “Fundamental aspects of hot isostatic pressing: an overview,” Metal. and Mater. Transactions A 31A, 2981–3000 (2000).
[Crossref]

Badikov, V. V.

Barton, P. B.

B. J. Skinner and P. B. Barton, “The substitution of oxygen for sulfur in wurtzite and sphalerite,” Am. Min. 45, 612–625 (1960).

Basiev, T. T.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Berry, P. A.

Burger, A.

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Carrig, T. J.

T. J. Carrig, “Transition-metal doped chalcogenide lasers,” J. Electron. Mat. 31(7), 759–769 (2002).
[Crossref]

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.

Chattopadhyay, K.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Chen, M.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Cui, H.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Cui, Y.

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

Davies, S.

H. V. Atkinson and S. Davies, “Fundamental aspects of hot isostatic pressing: an overview,” Metal. and Mater. Transactions A 31A, 2981–3000 (2000).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

Demirbas, U.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
[Crossref]

Doroshenko, M. E.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Ebrahim-Zadeh, M

M Ebrahim-Zadeh and I. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2005).

Fedorov, V. V.

Fernandez, A.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Feth, S.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Galkin, S. N.

Gallian, A.

Gapontsev, V. P.

George, M. A.

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Gerasimenko, A. S.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Higuchi, F.

H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).

Hommerich, U.

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

Ikesue, A.

A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79(7), 1927–1933 (1996).
[Crossref]

Jelinkova, H.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Jiang, B.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Jones, I. K.

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

Kamata, K.

A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79(7), 1927–1933 (1996).
[Crossref]

Kamon, K.

H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).

Komar, V. K.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Koranda, P.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Kou, H.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

Lalayants, A. I.

Lehoczky, S. L.

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Li, J.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Li, W.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Ma, X.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Martyshkin, D. V.

Matyi, R.

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Menendez, J. L.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Mirov, M. S.

Mirov, S. B.

Morgan, S. H.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Moskalev, I. S.

Namba, H.

H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).

Ndap, J.-O.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Nemec, M.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Nyein, E. E.

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

Nygren, M.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Osaka, H.

H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).

Pag, R. H.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

Pan, Y.

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

Payne, S. A.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

Puzikov, V. M.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Rablau, C. I.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Roy, N.

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

Schaffers, K. I.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

Schepler, K. L.

Sennaroglu, A.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
[Crossref]

Skinner, B. J.

B. J. Skinner and P. B. Barton, “The substitution of oxygen for sulfur in wurtzite and sphalerite,” Am. Min. 45, 612–625 (1960).

Somer, M.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
[Crossref]

Sorokina, I.

M Ebrahim-Zadeh and I. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2005).

Sorokina, I. T.

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26, 395–412 (2004).
[Crossref]

Su, C.-H.

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Suarez, M.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Sulc, J.

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Tiemann, B. G.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.

Torrecillas, R.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Trivedi, S. B.

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

Tsuboi, M.

M. Tsuboi, “Optically active lattice vibrations of zinc blende type and wurtzite type crystals,” J. Chem. Phys. 40(5), 1326–1335 (1964).
[Crossref]

Volz, M. P.

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

Voronkin, E. F.

Wagner, G. J.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

Wright, G.

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

Zelmon, D. E.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

Zhao, Z.

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Am. Min. (1)

B. J. Skinner and P. B. Barton, “The substitution of oxygen for sulfur in wurtzite and sphalerite,” Am. Min. 45, 612–625 (1960).

IEEE J. Quantum Elect. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Elect. 32(6), 885–895 (1996).
[Crossref]

J. Alloy. Compd. (1)

M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” J. Alloy. Compd. 598, 124–128 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue and K. Kamata, “Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics,” J. Am. Ceram. Soc. 79(7), 1927–1933 (1996).
[Crossref]

J. Chem. Phys. (1)

M. Tsuboi, “Optically active lattice vibrations of zinc blende type and wurtzite type crystals,” J. Chem. Phys. 40(5), 1326–1335 (1964).
[Crossref]

J. Cryst. Growth (3)

U. Hommerich, I. K. Jones, E. E. Nyein, and S. B. Trivedi, “Comparison of the optical properties of diffusion-doped polycrystalline Cr:ZnSe and Cr:CdTe windows,” J. Cryst. Growth 287, 450–453 (2006).
[Crossref]

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240, 176–184 (2002).
[Crossref]

A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Pag, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225, 249–256 (2001).
[Crossref]

J. Cryst. Growth. (1)

C.-H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth. 207, 35–42 (1999).
[Crossref]

J. Electron. Mat. (2)

T. J. Carrig, “Transition-metal doped chalcogenide lasers,” J. Electron. Mat. 31(7), 759–769 (2002).
[Crossref]

O. O. Adetunji, N. Roy, Y. Cui, G. Wright, J.-O. Ndap, and A. Burger, “Growth of Cr- and Co- doped CdSe crystals from high-temperature selenium solutions,” J. Electron. Mat. 31(7), 795–798 (2002).
[Crossref]

J. Eur. Ceram. Soc. (1)

M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc. 30, 1489–1494 (2010).
[Crossref]

Laser Phys. Lett. (1)

M. E. Doroshenko, P. Koranda, H. Jelinkova, J. Sulc, M. Nemec, T. T. Basiev, V. K. Komar, A. S. Gerasimenko, and V. M. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007).
[Crossref]

Metal. and Mater. Transactions A (1)

H. V. Atkinson and S. Davies, “Fundamental aspects of hot isostatic pressing: an overview,” Metal. and Mater. Transactions A 31A, 2981–3000 (2000).
[Crossref]

Opt. Express (2)

Opt. Mater. (2)

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28, 231–240 (2006).
[Crossref]

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26, 395–412 (2004).
[Crossref]

Opt. Mater. Express (1)

Other (3)

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid State Photonics, (Optical Society of America, 2004), paper WB12.

H. Namba, H. Osaka, K. Kamon, and F. Higuchi, “Process for preparing ZnSe single crystal,” U.S. Patent4,584,053 (1986).

M Ebrahim-Zadeh and I. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Top Row: Photographs of the undoped zinc selenide (left) and zinc sulfide (right) substrates. Bottom Row: Photographs of the chromium doped zinc selenide (left) and zinc sulfide (right) substrates after processing. During the process, 3000 Å of metallic chromium was sputtered onto the top surface before the application of a hot isostatic press treatment at 1050 °C and 30,000 PSI for two hours. After processing, the crystals were polished and the characteristic red and green colors associated with Cr:ZnSe and Cr:ZnS can be seen.
Fig. 2
Fig. 2 The normalized transmissivity of HIP treated Cr:ZnSe as a function of wavelength for various initial sputtered thickness of chromium. The dark blue, green, red, and light blue curves represent sputtered thickness of 1500, 3000, 4500, and 6000 Å respectively. Note the broadband absorption dip centered at 1780 nm corresponding to Cr2+ doped into ZnSe.
Fig. 3
Fig. 3 The normalized transmissivity of HIP treated Cr:ZnS as a function of wavelength for various initial sputtered thickness of chromium. The dark blue, green, red, and light blue curves represent sputtered thickness of 1500, 3000, 4500, and 6000 Å respectively. Note the broadband absorption dip centered at 1680 nm corresponding to Cr2+ doped into ZnS.
Fig. 4
Fig. 4 An averaged measurement of the fluorescent emission of Cr:ZnSe for a 6000 Å initial sputtered thickness of chromium when excited with a resonant 180 ns pulse. The red curve represents an exponential fit of the decay having a lifetime of 4.18 μs.
Fig. 5
Fig. 5 Top: A cross section image of Cr:ZnSe diffusion via the HIP process. Bottom: The concentration distribution as a function of position within the Cr:ZnSe crystal. This distribution has been fit with a diffusion equation to extract the diffusion length of chromium into the zinc selenide substrate (see text). Note the horizontal scale is the same for both figures.
Fig. 6
Fig. 6 The experimental layout of the z-cavity resonator. The Cr:ZnSe crystal is placed at Brewster’s angle between two dichroic mirrors, M1, that nominally collimate the beam between M1 and M2 as well as between M1 and the output coupler, OC. The pump laser light is mode matched to the resonator via the lens L1 before being injected into the resonator cavity.
Fig. 7
Fig. 7 The output power of the laser as a function of absorbed pump power. The red line represents a linear fit of the first five data points above threshold. From this fit, a threshold power of 2.88 Watts is calculated with an optical-to-optical slope efficiency of 56.2%. A maximum power of 1.33 Watts was measured corresponding to 6.16 Watts of absorbed pump light before thermal effects begin to dominate.
Fig. 8
Fig. 8 The broadband spectral output of a laser using commercially available post growth diffusion doped Cr:ZnSe gain media. Note the bandwidth is quite large, spanning tens of nanometers, indicative of inhomogenous broadening within the gain medium.
Fig. 9
Fig. 9 The spectral output of the HIP diffused Cr:ZnSe laser crystal as measured on an OSA. The linewidth of the output was measured to be 140 pm, corresponding to the resolution limit of the detector.
Fig. 10
Fig. 10 The spectral output of the Cr:ZnSe laser as a function of wavelength when tuned using an intracavity diffraction grating. The power output has been normalized and scaled relative to the peak power at the center of the gain envelope. Note that the spectral narrowing corresponding to a homogeneously broadened gain media remains in tact over the entirety of the tuning range from 2300 to 2700 nm.
Fig. 11
Fig. 11 The spectral output of the HIP treated commercial Cr:ZnSe laser crystal as measured with an OSA. The linewidth of the output was measured to be 140 pm, corresponding to the resolution limit of the detector. Contrasting this spectra with that of a non-HIP treated sample, the reduction in linewidth most probably results from the removal of defect centers within the crystal via the HIP process.
Fig. 12
Fig. 12 The transmission of Fe:ZnSe prepared via sputter deposition and HIP diffusion from 0.2 μm to 7μm. The dip in transmission around 3.0 μm indicates the presence of Fe2+ ions.
Fig. 13
Fig. 13 The transmission of Co:ZnSe prepared via sputter deposition and HIP treatment from 0.2 μm to 5μm. The location and relative depths of the multiple absorption features indicates the presence of Co2+ ions.
Fig. 14
Fig. 14 The transmission of Ni:ZnSe prepared via sputter deposition and HIP treatment from 0.2 μm to 5μm. The location and relative depths of the multiple absorption features indicates the presence of Ni2+ ions.

Tables (1)

Tables Icon

Table 1 The measured lifetimes τ and average densities n ¯ of Cr:ZnSe and Cr:ZnS sputtered with various thicknesses of metallic chromium prior to HIP treatment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( x ) = C 0 e x 2 4 D t
= 2 D t .
n ¯ = ln T σ

Metrics