Abstract

A tunable surface-emitting dual-wavelength laser emitted from the blended organic gain layer based on a holographic polymer dispersed liquid crystal (HPDLC) transmission grating feedback structure was reported. The organic blended gain layer was formed from Poly (2-methoxy-5-(2’-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) and Poly (2-methoxy-5-(3′, 7’-dimethyloctyloxy)-1, 4-phenylenevinylene) (MDMO-PPV) with a weight ratio of 2:1. The dual-wavelength laser located at 629.9 nm and 640 nm was obtained in a single beam. The optical characteristics of these two organic semiconducting materials and the dual-wavelength laser performance under an electric field are investigated and illustrated. This simple tunable dual-wavelength laser shows the potential to extend the development of organic lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared

San-Hui Chi, Joel M. Hales, Matteo Cozzuol, Charles Ochoa, Madison Fitzpatrick, and Joseph W. Perry
Opt. Express 17(24) 22062-22072 (2009)

Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser

Guy F. Barlow, Alan Shore, Graham A. Turnbull, and Ifor D. W. Samuel
J. Opt. Soc. Am. B 21(12) 2142-2150 (2004)

Low-threshold, single-mode, and linearly polarized lasing from all organic quasicrystal microcavity

Zongdai Liu, Rui Chen, Yanjun Liu, Xinhai Zhang, Xiaowei Sun, Wenbin Huang, and Dan Luo
Opt. Express 25(18) 21519-21525 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Lebedkin, T. Mappes, S. Köber, C. Koos, M. Kappes, and U. Lemmer, “Organic semiconductor distributed feedback laser as excitation source in Raman spectroscopy using free-beam and fibre coupling,” in SPIE Photonics Europe (International Society for Optics and Photonics, 2014), pp. 91370Y–91370Y–7.
  2. V. Shchukin, N. Ledentsov, T. Slight, W. Meredith, N. Gordeev, A. Nadtochy, A. Payusov, M. Maximov, S. Blokhin, and A. Blokhin, “Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems,” in SPIE OPTO(International Society for Optics and Photonics, 2016), pp. 976609–976609–10.
  3. C.-L. Wang, Y.-H. Chuang, and C.-L. Pan, “Two-wavelength interferometer based on a two-color laser-diode array and the second-order correlation technique,” Opt. Lett. 20(9), 1071–1073 (1995).
    [Crossref] [PubMed]
  4. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
    [Crossref] [PubMed]
  5. L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, and X. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
    [Crossref] [PubMed]
  6. L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
    [Crossref] [PubMed]
  7. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
    [Crossref] [PubMed]
  8. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
    [Crossref]
  9. C. W. Luo, Y. Q. Yang, I. T. Mak, Y. H. Chang, K. H. Wu, and T. Kobayashi, “A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output,” Opt. Express 16(5), 3305–3309 (2008).
    [Crossref] [PubMed]
  10. Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd: YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [Crossref]
  11. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
    [Crossref]
  12. Y. Li, “Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption,” Acc. Chem. Res. 45(5), 723–733 (2012).
    [Crossref] [PubMed]
  13. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications (John Wiley & Sons, 2012).
  14. R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [Crossref]
  15. W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
    [Crossref]
  16. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
    [Crossref] [PubMed]
  17. L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
    [Crossref]
  18. Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
    [Crossref]
  19. Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
    [Crossref]
  20. T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  21. W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
    [Crossref]
  22. M. M. Alam and S. A. Jenekhe, “Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes,” Chem. Mater. 14(11), 4775–4780 (2002).
    [Crossref]
  23. M. Soylu, “GaAs heterojunction devices with MDMO-PPV thin film,” Vacuum 106, 33–38 (2014).
    [Crossref]
  24. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
    [Crossref]
  25. D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
    [Crossref]
  26. L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
    [Crossref]
  27. K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
    [Crossref]
  28. H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
    [Crossref]
  29. S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
    [Crossref]
  30. W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
    [Crossref]
  31. T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
    [Crossref]
  32. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics (Springer, 1975).
  33. H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  34. K. Okamoto, Fundamentals of Optical Waveguides (Academic press, 2010).
  35. W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
    [Crossref]
  36. Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
    [Crossref]

2015 (2)

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

2014 (4)

W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
[Crossref]

M. Soylu, “GaAs heterojunction devices with MDMO-PPV thin film,” Vacuum 106, 33–38 (2014).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

2013 (1)

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

2012 (4)

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

Y. Li, “Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption,” Acc. Chem. Res. 45(5), 723–733 (2012).
[Crossref] [PubMed]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref] [PubMed]

2011 (2)

L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, and X. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
[Crossref] [PubMed]

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

C. W. Luo, Y. Q. Yang, I. T. Mak, Y. H. Chang, K. H. Wu, and T. Kobayashi, “A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output,” Opt. Express 16(5), 3305–3309 (2008).
[Crossref] [PubMed]

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

2007 (1)

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

2006 (1)

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

2005 (1)

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

2004 (1)

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

2002 (2)

H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[Crossref]

M. M. Alam and S. A. Jenekhe, “Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes,” Chem. Mater. 14(11), 4775–4780 (2002).
[Crossref]

2000 (2)

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd: YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

1999 (1)

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

1998 (1)

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

1995 (2)

1994 (1)

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

1972 (1)

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Adams, W.

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Ahn, T.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Alam, M. M.

M. M. Alam and S. A. Jenekhe, “Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes,” Chem. Mater. 14(11), 4775–4780 (2002).
[Crossref]

Athanasopoulos, S.

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

Bahtiar, A.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Bedford, R.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Beljonne, D.

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

Blom, P. W.

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Bradley, D.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Bräse, S.

Bredas, J.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Bubeck, C.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Bunning, T.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Burroughes, J.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Cao, Z.

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Chang, Y. H.

Chen, L.

Chen, Y.-F.

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd: YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

Chuang, Y.-H.

Cordeiro, R. M.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Deng, S.

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

Diao, Z.

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Dogariu, A.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Dos Santos, D.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Fallahi, M.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Fan, L.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Fang, X.

Friend, R.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Guo, L.

Gupta, R.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Gymer, R.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Hader, J.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

He, X.

Heeger, A. J.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Hennebicq, E.

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

Holmes, A.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Holzer, W.

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

Hoppe, H.

H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[Crossref]

Hörhold, H.-H.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

Hu, D.

Hu, L.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

Huang, W.

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
[Crossref]

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Huska, K.

Janssen, R. A.

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Jarzab, D.

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Jenekhe, S. A.

M. M. Alam and S. A. Jenekhe, “Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes,” Chem. Mater. 14(11), 4775–4780 (2002).
[Crossref]

Klinkhammer, S.

Kobayashi, T.

Koch, S. W.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Koetse, M. M.

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Kong, L.

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

Koynov, K.

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Lan, R.

Lemmer, U.

Li, Y.

Y. Li, “Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption,” Acc. Chem. Res. 45(5), 723–733 (2012).
[Crossref] [PubMed]

Liao, C.

Liu, H.

Liu, L.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Liu, M.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Liu, Q.

W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
[Crossref]

Liu, X.

Liu, Y.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Lögdlund, M.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Loi, M. A.

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Lu, M.

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Luo, C. W.

Ma, J.

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Mak, I. T.

Mappes, T.

Marks, R.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

McGehee, M. D.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Meissner, D.

H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[Crossref]

Meskers, S. C.

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Moloney, J. V.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Mu, Q.

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Murray, J. T.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Natarajan, L.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Nicolai, H. T.

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Offermans, T.

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Pan, C.-L.

Park, J. Y.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Peng, Z.

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Penzkofer, A.

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

Sariciftci, N.

H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[Crossref]

Shank, C.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Shen, Y.

Soylu, M.

M. Soylu, “GaAs heterojunction devices with MDMO-PPV thin film,” Vacuum 106, 33–38 (2014).
[Crossref]

Srdanov, V.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Stevenson, M.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Stolz, W.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Sun, J.

Sutherland, R.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Taliani, C.

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Tillmann, H.

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

Tondiglia, V.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Valouch, S.

van Hal, P. A.

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Vanderheiden, S.

Vannahme, C.

Walker, A. B.

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

Wang, C.-L.

Wang, D. N.

Wang, H.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Wang, J.

Wang, Z.

Wu, K. H.

Xia, M.

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

Xu, X.

Xuan, L.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
[Crossref]

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Yang, C.

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Yang, Y. Q.

Yao, L.

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Yu, H.

Zakharian, A. R.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

Zhang, G.

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Zhang, H.

Zhao, Y.

Zhuang, S.

Acc. Chem. Res. (1)

Y. Li, “Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption,” Acc. Chem. Res. 45(5), 723–733 (2012).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs) 1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Phys. B (2)

W. Huang, Q. Liu, L. Xuan, and L. Chen, “Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. B 117(4), 1065–1071 (2014).
[Crossref]

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd: YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

Appl. Phys. Express (1)

W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, and L. Xuan, “Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Appl. Phys. Lett. (3)

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[Crossref]

R. Sutherland, V. Tondiglia, L. Natarajan, T. Bunning, and W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Chem. Mater. (1)

M. M. Alam and S. A. Jenekhe, “Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes,” Chem. Mater. 14(11), 4775–4780 (2002).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

J. Mater. Chem. (1)

Z. Diao, S. Deng, W. Huang, L. Xuan, L. Hu, Y. Liu, and J. Ma, “Organic dual-wavelength distributed feedback laser empowered by dye-doped holography,” J. Mater. Chem. 22(44), 23331–23334 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

Z. Diao, L. Xuan, L. Liu, M. Xia, L. Hu, Y. Liu, and J. Ma, “A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6177–6182 (2014).
[Crossref]

L. Liu, L. Xuan, G. Zhang, M. Liu, L. Hu, Y. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

J. Phys. Chem. C (1)

S. Athanasopoulos, E. Hennebicq, D. Beljonne, and A. B. Walker, “Trap limited exciton transport in conjugated polymers,” J. Phys. Chem. C 112(30), 11532–11538 (2008).
[Crossref]

Liq. Cryst. (1)

L. Liu, W. Huang, Z. Diao, Z. Peng, Q. Mu, Y. Liu, C. Yang, L. Hu, and L. Xuan, “Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer,” Liq. Cryst. 41(2), 145–152 (2014).
[Crossref]

Macromolecules (1)

K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.-H. Hörhold, and C. Bubeck, “Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV,” Macromolecules 39(25), 8692–8698 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Hoppe, N. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[Crossref]

Nature (1)

R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, “Electroluminescence in conjugated polymers,” Nature 397(6715), 121–128 (1999).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Org. Electron. (2)

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Z. Diao, L. Kong, L. Xuan, and J. Ma, “Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating,” Org. Electron. 27, 101–106 (2015).
[Crossref]

Phys. Rev. B (1)

T. Offermans, P. A. van Hal, S. C. Meskers, M. M. Koetse, and R. A. Janssen, “Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV,” Phys. Rev. B 72(4), 045213 (2005).
[Crossref]

Soft Matter (1)

D. Jarzab, M. Lu, H. T. Nicolai, P. W. Blom, and M. A. Loi, “Photoluminescence of conjugated polymer blends at the nanoscale,” Soft Matter 7(5), 1702–1707 (2011).
[Crossref]

Synth. Met. (1)

W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004).
[Crossref]

Vacuum (1)

M. Soylu, “GaAs heterojunction devices with MDMO-PPV thin film,” Vacuum 106, 33–38 (2014).
[Crossref]

Other (5)

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics (Springer, 1975).

K. Okamoto, Fundamentals of Optical Waveguides (Academic press, 2010).

X. Liu, S. Lebedkin, T. Mappes, S. Köber, C. Koos, M. Kappes, and U. Lemmer, “Organic semiconductor distributed feedback laser as excitation source in Raman spectroscopy using free-beam and fibre coupling,” in SPIE Photonics Europe (International Society for Optics and Photonics, 2014), pp. 91370Y–91370Y–7.

V. Shchukin, N. Ledentsov, T. Slight, W. Meredith, N. Gordeev, A. Nadtochy, A. Payusov, M. Maximov, S. Blokhin, and A. Blokhin, “Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems,” in SPIE OPTO(International Society for Optics and Photonics, 2016), pp. 976609–976609–10.

B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Chemical structures of (a) MEH-PPV and (b) MDMO-PPV and (c) the schematic structure of organic dual-wavelength laser in this work.
Fig. 2
Fig. 2 Fabricating and diffraction efficiency measuring setup for HPDLC grating structure.
Fig. 3
Fig. 3 Schematic experimental setup for (a) the absorption and (b) PL spectra measurements.
Fig. 4
Fig. 4 Optical setup for pumping the organic DWL sample and collecting the output emission.
Fig. 5
Fig. 5 Normalized intensity for absorption and PL spectra of MEH-PPV film, MEH-PPV:MDMO-PPV blended film and MDMO-PPV film.
Fig. 6
Fig. 6 Spectra of (a) dual-wavelength laser of sample b measured at 0.8 uJ/pulse and (b) lasers of sample a emitted from MEH-PPV and sample c emitted from MDMO-PPV measured at 2.2 uJ/pulse.
Fig. 7
Fig. 7 Lasing output energy intensity as a function of pump energy of sample b.
Fig. 8
Fig. 8 Diffraction efficiency as a function of the applied electric field for sample b.
Fig. 9
Fig. 9 Spectra of the organic dual-wavelength laser on the dependence of (a) electric fields and (b) grating periods.
Fig. 10
Fig. 10 (a) The lasing intensity and (b) lasing thresholds on the dependence of electric field.

Tables (1)

Tables Icon

Table 1 The gain films and diffraction efficiencies of different samples in the experiment.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 532 2sin( θ 2 )
mλ=2 n eff Λ

Metrics