Abstract

The glass forming region of chalcogenide glasses in a germanium-tin-sulfur (Ge-Sn-S) ternary system is depicted. Three series of Ge-Sn-S glasses in different compositions are selected and synthesized in order to investigate the dependence of structural, optical and third-order nonlinear properties on chemical composition. Spectroscopy analyses demonstrate that Ge and Sn have similar structural behavior in the glass network, while the introduction of Sn decreases the optical bandgap energy and improves the infrared transmittance of the glasses. Third-order nonlinear properties of the glasses are investigated by the Z-scan technique at a mid-infrared wavelength of 3.3 μm. The experimental results demonstrate that the nonlinear absorption at the mid-infrared wavelength is absent due to the large optical bandgap energy of the glasses, while the nonlinear refractive behavior is evident and can be improved by reducing number of [GeS4] tetrahedrons in the glass network.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

7 September 2016: A correction was made to Fig. 6.


OSA Recommended Articles
Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system

Ruiqiang Lin, Feifei Chen, Xiaoyu Zhang, Yicong Huang, Baoan Song, Shixun Dai, Xianghua Zhang, and Wei Ji
Opt. Express 25(21) 25674-25688 (2017)

Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window

Beijing Qiao, Shixun Dai, Yinsheng Xu, Peiqing Zhang, Xiang Shen, Tiefeng Xu, Qiuhua Nie, Wei Ji, and Feifei Chen
Opt. Mater. Express 5(10) 2359-2365 (2015)

Improved nonlinear optical properties of chalcogenide glasses in Ge-Sn-Se ternary system by thermal treatment

Yicong Huang, Feifei Chen, Beijing Qiao, Shixun Dai, Qiuhua Nie, and Xianghua Zhang
Opt. Mater. Express 6(5) 1644-1652 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  2. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  3. J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571–1575 (2013).
    [Crossref]
  4. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  5. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  6. H. Guo, C. Hou, F. Gao, A. Lin, P. Wang, Z. Zhou, M. Lu, W. Wei, and B. Peng, “Third-order nonlinear optical properties of GeS(2)-Sb(2)S(3)-CdS chalcogenide glasses,” Opt. Express 18(22), 23275–23284 (2010).
    [Crossref] [PubMed]
  7. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
    [Crossref] [PubMed]
  8. D. Marchese, M. De Sario, A. Jha, A. K. Kar, and E. C. Smith, “Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching,” J. Opt. Soc. Am. B 15(9), 2361–2370 (1998).
    [Crossref]
  9. X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
    [Crossref]
  10. Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
    [Crossref]
  11. G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
    [Crossref]
  12. F. Chen, S. Dai, C. Lin, Q. Yu, and Q. Zhang, “Performance improvement of transparent germanium-gallium-sulfur glass ceramic by gold doping for third-order optical nonlinearities,” Opt. Express 21(21), 24847–24855 (2013).
    [Crossref] [PubMed]
  13. I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
    [Crossref]
  14. B. Qiao, S. Dai, Y. Xu, P. Zhang, X. Shen, T. Xu, Q. Nie, W. Ji, and F. Chen, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
    [Crossref]
  15. H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
    [Crossref]
  16. V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
    [Crossref]
  17. G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
    [Crossref]
  18. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).
  19. J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).
    [Crossref]
  20. Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
    [Crossref]
  21. S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
    [Crossref]
  22. G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
    [Crossref]
  23. C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
    [Crossref]
  24. X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
    [Crossref]
  25. S. A. Fayek, “The effects of Sn addition on properties and structure in Ge–Se chalcogenide glass,” Infrared Phys. Technol. 46(3), 193–198 (2005).
    [Crossref]
  26. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
    [Crossref] [PubMed]
  27. M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
    [Crossref] [PubMed]
  28. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]

2015 (1)

2014 (4)

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

2013 (3)

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

2010 (1)

2009 (1)

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

2008 (1)

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

2007 (3)

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
[Crossref]

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
[Crossref]

2006 (2)

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[Crossref] [PubMed]

2005 (1)

S. A. Fayek, “The effects of Sn addition on properties and structure in Ge–Se chalcogenide glass,” Infrared Phys. Technol. 46(3), 193–198 (2005).
[Crossref]

2004 (2)

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
[Crossref]

2003 (1)

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

1998 (1)

1993 (1)

S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (2)

M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
[Crossref]

1972 (1)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Boudebs, G.

Carlie, N.

Cernosek, Z.

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

Cernoskova, E.

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

Chen, F.

Chen, Y.

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Cherukulappurath, S.

Croitoru, N.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
[Crossref]

Cui, Y.

Dai, S.

B. Qiao, S. Dai, Y. Xu, P. Zhang, X. Shen, T. Xu, Q. Nie, W. Ji, and F. Chen, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
[Crossref]

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

F. Chen, S. Dai, C. Lin, Q. Yu, and Q. Zhang, “Performance improvement of transparent germanium-gallium-sulfur glass ceramic by gold doping for third-order optical nonlinearities,” Opt. Express 21(21), 24847–24855 (2013).
[Crossref] [PubMed]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

De Sario, M.

Dror, J.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Fayek, S. A.

S. A. Fayek, “The effects of Sn addition on properties and structure in Ge–Se chalcogenide glass,” Infrared Phys. Technol. 46(3), 193–198 (2005).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Gao, F.

Gosciniak, J.

Gu, S.

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

Gu, S. X.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Guo, H.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Haruvi-Busnach, I.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
[Crossref]

Hongli, M. A.

X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
[Crossref]

Hou, C.

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571–1575 (2013).
[Crossref]

Humeau, A.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Ivanova, Z. G.

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

Jha, A.

Ji, W.

Kar, A. K.

Kim, S.-H.

S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lin, A.

Lin, C.

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

F. Chen, S. Dai, C. Lin, Q. Yu, and Q. Zhang, “Performance improvement of transparent germanium-gallium-sulfur glass ceramic by gold doping for third-order optical nonlinearities,” Opt. Express 21(21), 24847–24855 (2013).
[Crossref] [PubMed]

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lu, M.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lucas, J.

X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
[Crossref]

Luther-Davies, B.

Madden, S.

Mao, S.

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

Marchese, D.

Matthiesen, J.

G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
[Crossref]

Menth, A.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).
[Crossref]

Meyer, J.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Nie, Q.

B. Qiao, S. Dai, Y. Xu, P. Zhang, X. Shen, T. Xu, Q. Nie, W. Ji, and F. Chen, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
[Crossref]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Parvanov, S.

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

Parvanova, V.

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

Peng, B.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petit, L.

Qian, G.

Qiao, B.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Qu, G.

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571–1575 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[Crossref] [PubMed]

Saffarini, G.

G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
[Crossref]

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
[Crossref]

Saiter, J. M.

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
[Crossref]

G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
[Crossref]

Sakka, S.

S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
[Crossref]

Schmitt, H.

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shah, L.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Shen, X.

Smith, E. C.

Stryland, E. W. V.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tan, D. T.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, H.

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

Tao, H. Z.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Tauc, J.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).
[Crossref]

Tomova, K.

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

Tong, W.

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

Vassilev, V.

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

Vassilev, V. S.

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

Venkatram, N.

Wang, B.

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

Wang, P.

Wang, R.

Wang, T.

Wang, X.

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Wang, X. F.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Wang, Z.

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

Wei, W.

Xu, T.

B. Qiao, S. Dai, Y. Xu, P. Zhang, X. Shen, T. Xu, Q. Nie, W. Ji, and F. Chen, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
[Crossref]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Xu, Y.

B. Qiao, S. Dai, Y. Xu, P. Zhang, X. Shen, T. Xu, Q. Nie, W. Ji, and F. Chen, “Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window,” Opt. Mater. Express 5(10), 2359 (2015).
[Crossref]

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

Yang, Z.

Yoko, T.

S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
[Crossref]

Yu, J. G.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Yu, Q.

Zang, H.

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

Zhai, S.

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

Zhang, P.

Zhang, Q.

Zhang, X.

X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
[Crossref]

Zhao, X.

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

Zhao, X. J.

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Zheng, X.

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, Z.

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

IEEE. J Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stryland, ““Dispersion of bound electron nonlinear refraction in solids,” IEEE. J Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Infrared Phys. Technol. (1)

S. A. Fayek, “The effects of Sn addition on properties and structure in Ge–Se chalcogenide glass,” Infrared Phys. Technol. 46(3), 193–198 (2005).
[Crossref]

J. Am. Ceram. Soc. (2)

S.-H. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76(10), 2486–2490 (1993).
[Crossref]

G. Qu, S. Zhai, Y. Xu, S. Dai, H. Tao, S. Gu, and C. Lin, “The effect of PbS on crystallization behavior of GeS2-Ga2S3-based chalcogenide glasses,” J. Am. Ceram. Soc. 97(11), 3469–3474 (2014).
[Crossref]

J. Mater. Res. (1)

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(6), 1215–1223 (1990).
[Crossref]

J. Non-Cryst. Solids (4)

C. Lin, H. Tao, Z. Wang, B. Wang, H. Zang, X. Zheng, and X. Zhao, “Defect configurations in Ge–S chalcogenide glasses studied by Raman scattering and positron annihilation technique,” J. Non-Cryst. Solids 355(7), 438–440 (2009).
[Crossref]

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).
[Crossref]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

X. Zhang, M. A. Hongli, and J. Lucas, “A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix,” J. Non-Cryst. Solids 337(2), 130–135 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek, “Physicochemical, structural and fluorescence properties of Er-doped Ge–S–Ga glasses,” J. Phys. Chem. Solids 64(1), 107–110 (2003).
[Crossref]

Mater. Chem. Phys. (1)

V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2–Sb2Se3–PbSe system,” Mater. Chem. Phys. 103(2-3), 312–317 (2007).
[Crossref]

Mater. Lett. (2)

G. Saffarini, J. M. Saiter, and J. Matthiesen, “Thermal stability and percolation threshold of Ge–Se–Fe glasses,” Mater. Lett. 61(2), 432–436 (2007).
[Crossref]

H. Tao, S. Mao, W. Tong, and X. Zhao, “Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system,” Mater. Lett. 60(6), 741–745 (2006).
[Crossref]

Nat. Photonics (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “andJ. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

G. Saffarini, J. M. Saiter, and H. Schmitt, “The composition dependence of the optical band gap in Ge-Se-In thin films,” Opt. Mater. 29(9), 1143–1147 (2007).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. Lett. (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Solid State Commun. (1)

X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2–Ga2S3–CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun. 130(7), 459–464 (2004).
[Crossref]

Other (1)

Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) XRD patterns of GSS samples of series C; (b) identification of the crystal phases in crystallized sample with molar composition of Ge20Sn13.5
Fig. 2
Fig. 2 Glass formation region (mol%) of the Ge-Sn-S ternary system.
Fig. 3
Fig. 3 Mean coordination number (Z) versus the transition temperature (Tg) of the Ge-Sn-S glasses.
Fig. 4
Fig. 4 absorption spectra of GSS glasses of series A, B and C
Fig. 5
Fig. 5 FTIR spectra of GSS glasses of series A, B and C.
Fig. 6
Fig. 6 Raman spectra of GSS glasses of series A, B and C.
Fig. 7
Fig. 7 Structural units in the GSS network according to Raman spectra taken from three glass samples.
Fig. 8
Fig. 8 (a) open-aperture Z-scans of the GSS glasses; (b) closed-aperture Z-scans of GSS glasses in series B.

Tables (1)

Tables Icon

Table 1 Composition, physical, optical and TONL parameters of Ge-Sn-S glass samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α h v = B ( h v E opg ) m

Metrics