Abstract

We present details of the homo-epitaxial growth of Yb:YAG onto a <100> oriented YAG substrate by pulsed laser deposition. Material characterization and initial laser experiments are also reported, including the demonstration of laser action from the 15 µm-thick planar waveguide generating 11.5 W of output power with a slope efficiency of 48%. This work indicates that under appropriate conditions, high-quality single-crystal Yb:YAG growth via pulsed laser deposition is achievable with characteristics comparable to those obtained via conventional crystal growth techniques.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic control of refractive index during pulsed-laser-deposited waveguide growth

James A. Grant-Jacob, Stephen J. Beecher, Haris Riris, Anthony W. Yu, David P. Shepherd, Robert W. Eason, and Jacob I. Mackenzie
Opt. Mater. Express 7(11) 4073-4081 (2017)

Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered Combinatorial Pulsed Laser Deposition

Katherine A. Sloyan, Timothy C. May-Smith, Michalis Zervas, Robert W. Eason, Steven Huband, David Walker, and Pamela A. Thomas
Opt. Express 18(24) 24679-24687 (2010)

Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser

Stephen J. Beecher, Tina L. Parsonage, Jacob I. Mackenzie, Katherine A. Sloyan, James A. Grant-Jacob, and Robert W. Eason
Opt. Express 22(18) 22056-22061 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  2. S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
    [Crossref] [PubMed]
  3. D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
    [Crossref]
  4. H. Baker, J. Lee, and D. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
    [Crossref] [PubMed]
  5. M. J. F. Digonnet and C. J. Gaeta, “Theoretical analysis of optical fiber laser amplifiers and oscillators,” Appl. Opt. 24(3), 333–342 (1985).
    [Crossref] [PubMed]
  6. J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
    [Crossref]
  7. C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
    [Crossref]
  8. T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” 2006 Conf. Lasers Electro-Optics 2006 Quantum Electron. Laser Sci. Conf. (2006).
    [Crossref]
  9. S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing in Nd3+-doped Sapphire,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), p. ATu1A.6.
  10. J. Lancok, M. Jelinek, and F. Flory, “Optical properties of PLD-created Nd:YAG and Nd:YAP planar waveguide thin films,” in (1999), Vol. 3571, pp. 364–367.
    [Crossref]
  11. M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).
  12. M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
    [Crossref]
  13. T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
    [Crossref]
  14. T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
    [Crossref] [PubMed]
  15. T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
    [Crossref]
  16. “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .
  17. K. A. Sloyan, “Multi-beam pulsed laser deposition for engineered crystal films,” PhD Thesis, University of Southampton (2012).
  18. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
    [Crossref]
  19. B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  20. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  21. W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]

2015 (1)

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

2014 (1)

2008 (1)

2007 (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

2004 (2)

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

2002 (1)

2001 (3)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

1996 (1)

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1985 (1)

1982 (1)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Adachi, K.

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

Aull, B.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Baker, H.

Beach, R. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Beecher, S. J.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chvostova, D.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Darby, M. S. B.

Digonnet, M. J. F.

Eason, R. W.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[Crossref] [PubMed]

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Ezaki, M.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

Gaeta, C. J.

Grant-Jacob, J. A.

Grivas, C.

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

Hall, D.

Healy, M. J. F.

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

Hettrick, S. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Ishida, Y.

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

Jelinek, M.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Jenssen, H.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kumagai, H.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lancok, J.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Lee, J.

Li, C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mackovác, A.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

May-Smith, T. C.

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[Crossref] [PubMed]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

Meissner, H. E.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mitchell, S. C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Muir, A. C.

Nejezchlebb, K.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Obara, M.

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

Oswalda, J.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Parsonage, T. L.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y₂O₃ planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Paveka, M.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Shepherd, D. P.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Shimoda, T.

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

Slechtováa, V.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Sloyan, K. A.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Studnikaa, V.

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

Szela, J. W.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

Toyoda, K.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69(20), 2977 (1996).
[Crossref]

Appl. Surf. Sci. (1)

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

IEEE J. Quantum Electron. (3)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

W. F. Krupke, “Ytterbium solid-state lasers - the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal Planar Waveguides, a Power Scaling Architecture for Low-Gain Transitions,” IEEE J. Sel. Top. Quantum Electron. 21(1), 380–389 (2015).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Opt. Commun. (2)

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1-6), 355–361 (2004).
[Crossref]

T. Shimoda, Y. Ishida, K. Adachi, and M. Obara, “Fabrication of highly ytterbium (Yb3+)-doped YAG thin film by pulsed laser deposition,” Opt. Commun. 194(1-3), 175–179 (2001).
[Crossref]

Opt. Express (2)

Other (6)

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” 2006 Conf. Lasers Electro-Optics 2006 Quantum Electron. Laser Sci. Conf. (2006).
[Crossref]

S. H. Waeselmann, S. Heinrich, C. Kraenkel, and G. Huber, “Lasing in Nd3+-doped Sapphire,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), p. ATu1A.6.

J. Lancok, M. Jelinek, and F. Flory, “Optical properties of PLD-created Nd:YAG and Nd:YAP planar waveguide thin films,” in (1999), Vol. 3571, pp. 364–367.
[Crossref]

M. Jelinek, J. Oswalda, V. Studnikaa, J. Lancok, M. Paveka, D. Chvostova, V. Slechtováa, K. Nejezchlebb, and A. Mackovác, “Optical properties of Er : YAG and Er : YAP materials and layers grown by laser,” 5036, 268–274 (2003).

“Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .

K. A. Sloyan, “Multi-beam pulsed laser deposition for engineered crystal films,” PhD Thesis, University of Southampton (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of pulsed laser deposition set-up.
Fig. 2
Fig. 2 XRD spectrum of (a) Yb(1.4%):YAG film, 2θ of 10° to 80°. (b) Yb(1.4%):YAG film (green) and blank YAG substrate (red), 2θ of 29° to 30°.
Fig. 3
Fig. 3 XRD data of the Yb(1.4%):YAG film on <100> YAG displayed as an intensity profile at α = 0 o of a (400) pole figure with <100> orientation.
Fig. 4
Fig. 4 Calculated absorption and emission cross sections from spectroscopic measurements of Czochralski- and PLD-grown Yb(1.4%):YAG.
Fig. 5
Fig. 5 Laser output performance as a function of pump power using a 50% output coupler. Inset: Image of the waveguide laser mode.

Metrics