Abstract

Graphene oxide (GO) obtained by chemical exfoliation exhibits a quasi-2D structure. Its refractive index is very close to the theoretically predicted best refractive index for a single antireflection coating layer between air and Si. The robust honeycomb plane structure of GO makes it a promising mask candidate for surface texturizing. Here, we demonstrate different GO distributions on Si, and report the reflection properties before and after etching. For an etched Si substrate with suitable GO coating, the reflectance reached 2.1% at 667 nm. Preliminary 1.5-min-long etching of a p+nn+ solar cell with a GO mask boosted the efficiency from 7.09% to 7.55%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells

J.Y. Chen, W.-L. Chang, C.K. Huang, and K.W. Sun
Opt. Express 19(15) 14411-14419 (2011)

Wire textured, multi-crystalline Si solar cells created using self-assembled masks

Kejia (Albert) Wang, Oki Gunawan, Naim Moumen, George Tulevski, Hisham Mohamed, Babak Fallahazad, Emanuel Tutuc, and Supratik Guha
Opt. Express 18(S4) A568-A574 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  2. X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
    [Crossref]
  3. M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
    [Crossref]
  4. W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photovoltaics,” Opt. Mater. Express 5(6), 1482–1487 (2015).
    [Crossref]
  5. H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
    [Crossref]
  6. S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
    [Crossref]
  7. L. J.-H. Lin and Y.-P. Chiou, “Optical design of GaN/In(x)Ga(1-x)N/cSi tandem solar cells with triangular diffraction grating,” Opt. Express 23(11), A614–A624 (2015).
    [Crossref] [PubMed]
  8. Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
    [Crossref]
  9. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
    [Crossref]
  10. U. Schulz, F. Rickelt, H. Ludwig, P. Munzert, and N. Kaiser, “Gradient index antireflection coatings on glass containing plasma-etched organic layers,” Opt. Mater. Express 5(6), 1259–1265 (2015).
    [Crossref]
  11. K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
    [Crossref]
  12. Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
    [Crossref]
  13. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
    [Crossref]
  14. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, 1989), p. 457.
  15. R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
    [Crossref] [PubMed]
  16. C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).
  17. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
    [Crossref] [PubMed]
  18. M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1Suppl 1), A28–A34 (2011).
    [Crossref] [PubMed]
  19. L. R. Radovic, “Active sites in graphene and the mechanism of CO2 formation in carbon oxidation,” J. Am. Chem. Soc. 131(47), 17166–17175 (2009).
    [Crossref] [PubMed]
  20. Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
    [Crossref]
  21. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
    [Crossref]
  22. C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
    [Crossref] [PubMed]
  23. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, Atrium, 2008), p. 182.
  24. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
    [Crossref]
  25. K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
    [Crossref]
  26. G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
    [Crossref]
  27. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010).
    [Crossref] [PubMed]
  28. A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
    [Crossref]

2015 (4)

2014 (4)

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

2013 (5)

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

2012 (1)

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

2011 (3)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1Suppl 1), A28–A34 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

L. R. Radovic, “Active sites in graphene and the mechanism of CO2 formation in carbon oxidation,” J. Am. Chem. Soc. 131(47), 17166–17175 (2009).
[Crossref] [PubMed]

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

2008 (2)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

2006 (1)

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

1990 (1)

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

Aberle, A. G.

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Ao, X.

Askar, K.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Bao, X.

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Bhatnagar, M.

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Brabec, C. J.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Chan, C.-H.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Chen, H. Y.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Chen, H.-C.

Chen, M.-H.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

Chen, Y.

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

Chiou, Y.-P.

Choi, B.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Chu, A. K.

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

Cooper, I. B.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Cui, Y.

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Das, A.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Dennler, G.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Di, H.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Dommett, G. H. B.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Duttagupta, S.

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

Fang, Y.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Forberich, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Fromherz, T.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Fu, Q.

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gozubenli, N.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Guo, Y. N.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Guo, Z.

Han, K.-S.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

He, Y.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Hingerl, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Hoex, B.

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

Huang, S. Y.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Huang, W.

Inoue, S.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Jee, S.-W.

Jiang, B.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Jiang, M. M.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Jiang, P.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Jiao, K.

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Jung, J.-Y.

Kaiser, N.

Kohlhaas, K. M.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Koyama, F.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Kühl, K.

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

Kumar, R.

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Kuo, H.-C.

Lee, C. K.

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

Lee, H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Lee, J.-H.

Li, B. H.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Li, L.-J.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Liang, L.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Lin, C.-C.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Lin, C.-H.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Lin, L. J.-H.

Lin, Z.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Liu, Y.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Ludwig, H.

Luo, Z.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Ma, F.-J.

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

Ma, Y.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Matsutani, A.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Mayer, G. K.

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

Mehta, B. R.

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Munzert, P.

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Nakahama, M.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Offereins, H. L.

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

Pan, Y.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Park, K.-T.

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Phillips, B. M.

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Piner, R. D.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Radovic, L. R.

L. R. Radovic, “Active sites in graphene and the mechanism of CO2 formation in carbon oxidation,” J. Am. Chem. Soc. 131(47), 17166–17175 (2009).
[Crossref] [PubMed]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Ran, L. L. X.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Rath, S.

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Rickelt, F.

Rohatgi, A.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Ruoff, R. S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Sakaguchi, T.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Sandmaier, H.

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

Sano, H.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Scharber, M. C.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Schulz, U.

Shan, C. X.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Sharma, A. K.

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Shen, D. Z.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Shin, J.-H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Stach, E. A.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Su, C.-Y.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Tan, D.

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Tang, X.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Tsai, C.-H.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Tsai, M.-A.

Tsai, Z. Y.

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

Tseng, P.-C.

Um, H.-D.

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Wang, J. S.

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

Wang, S. P.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Wang, X.

W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photovoltaics,” Opt. Mater. Express 5(6), 1482–1487 (2015).
[Crossref]

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

Wang, Y.

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

Wei, D. Y.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Wong, C. P.

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Xiao, S. Q.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Xie, X. H.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Xu, L. X.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Xu, S.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Xu, Y.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Xue, Y.

Yeh, W.-T.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Yoon, W.-Y.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Yu, P.

Yu, Z.

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Zhang, H.

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Zhang, W.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Zhang, Z. Z.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Zhao, D. X.

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Zhao, J.

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Zhou, H. P.

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Zimney, E. J.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. H. Xie, Z. Z. Zhang, B. H. Li, S. P. Wang, M. M. Jiang, C. X. Shan, D. X. Zhao, H. Y. Chen, and D. Z. Shen, “Mott-type MgxZn1-xO-based visible-blind ultraviolet photodetectors with active anti- reflection layer,” Appl. Phys. Lett. 102(23), 231122 (2013).
[Crossref]

Appl. Surf. Sci. (1)

H. P. Zhou, D. Y. Wei, L. X. Xu, Y. N. Guo, S. Q. Xiao, S. Y. Huang, and S. Xu, “Low temperature SiNx:H films deposited by inductively coupled plasma for solar cell applications,” Appl. Surf. Sci. 264, 21–26 (2013).
[Crossref]

Chem. Mater. (1)

C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, “Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers,” Chem. Mater. 21(23), 5674–5680 (2009).
[Crossref]

Colloid Surf. A-Physicochem, Eng. Asp. (1)

K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloid Surf. A-Physicochem, Eng. Asp. 439, 84–100 (2013).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

IEEE Photonics Technol. Lett. (1)

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

L. R. Radovic, “Active sites in graphene and the mechanism of CO2 formation in carbon oxidation,” J. Am. Chem. Soc. 131(47), 17166–17175 (2009).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kühl, “Fabrication of non‐underetched convex corners in anisotropic etching of (100)‐silicon in aqueous KOH with respect to novel micromechanic elements,” J. Electrochem. Soc. 137(12), 3947–3951 (1990).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. Jiao, X. Wang, Y. Wang, and Y. Chen, “Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7715–7721 (2014).
[Crossref]

J. Phys. Chem. C (2)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Y. Cui, Q. Fu, H. Zhang, D. Tan, and X. Bao, “Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy,” J. Phys. Chem. C 113(47), 20365–20370 (2009).
[Crossref]

Nano Energy (1)

Y. Liu, A. Das, Z. Lin, I. B. Cooper, A. Rohatgi, and C. P. Wong, “Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells,” Nano Energy 3, 127–133 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

R. Kumar, A. K. Sharma, M. Bhatnagar, B. R. Mehta, and S. Rath, “Antireflection properties of graphene layers on planar and textured silicon surfaces,” Nanotechnology 24(16), 165402 (2013).
[Crossref] [PubMed]

Nature (1)

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

Sol. Energy Mater. Sol. Cells (3)

S. Duttagupta, F.-J. Ma, B. Hoex, and A. G. Aberle, “Excellent surface passivation of heavily doped p+ silicon by low-temperature plasma-deposited SiOx/SiNy dielectric stacks with optimised antireflective performance for solar cell application,” Sol. Energy Mater. Sol. Cells 120, 204–208 (2014).
[Crossref]

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells 93(8), 1276–1280 (2009).
[Crossref]

Surf. Coat. Tech. (1)

Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. L. X. Ran, Y. Pan, and Z. Luo, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings,” Surf. Coat. Tech. 276, 471–478 (2015).
[Crossref]

Thin Solid Films (1)

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[Crossref]

Other (2)

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, Atrium, 2008), p. 182.

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, 1989), p. 457.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 AFM images of the (a) F0, (b) F1, and (c) F30 samples. The left part shows the surface morphology and the right part shows the height profile (The profile is cut along the dashed lines shown in the morphology figures on the left side of the figure).
Fig. 2
Fig. 2 Dependence of reflectance on the refractive index and wavelength, for different Si antireflection layer thicknesses: (a) 50 nm and (b) 100 nm. The incident light was assumed to be at 15° relative to the Si surface normal.
Fig. 3
Fig. 3 The reflectance of GO-covered and control samples (without etching). The deposition of GO reduced the sample reflectance.
Fig. 4
Fig. 4 AFM images of the (a) etched F0, (b) etched F1, (c) etched F30, and (d) etched control samples. The islands on the etched F0 sample are sharper than those on the etched F30 sample.
Fig. 5
Fig. 5 The reflectance of the etched GO and control samples. The samples were etched by applying a KOH solution for 5 min.
Fig. 6
Fig. 6 SEM images of the (a) etched F0, (b) etched F1, and (c) etched F30 samples. The dense small GO flakes in addition to some large GO flakes on F30 yield fewer pyramid textures (bright spots) on the etched F30 sample.
Fig. 7
Fig. 7 (a) Current density-voltage characteristics of 1.5-min-long etched F0, F1, F30, and control p + nn + cells under AM 1.5 G illumination. (b) An AFM image of the 1.5-min-long etched F30 p + nn + substrate. Shorter etching duration results in smaller undulations, compared with those in Fig. 4(c).

Tables (1)

Tables Icon

Table 1 Solar Cell Performance Parameters.

Metrics