Abstract

In this article, we have focused our attention on the femtosecond laser irradiation of fused silica to study the mechanisms of micro-cavities and nanofibers formation. The nanofibers formed have small diameters and are extremely long, with a typical aspect ratio of 1000. Structural rearrangements and density variation have been studied by micro-Raman spectroscopy as a function of the irradiation parameters. 3D spatial characterizations of structural reorganizations and molecular oxygen production have given insights on high-temperature and high-pressure silica transformations by high repetition rate femtosecond laser irradiation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source

Jia Qi, Zhenhua Wang, Jian Xu, Zijie Lin, Xiaolong Li, Wei Chu, and Ya Cheng
Opt. Express 26(23) 29669-29678 (2018)

Structural changes in fused silica after exposure to focused femtosecond laser pulses

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol
Opt. Lett. 26(21) 1726-1728 (2001)

Effect of femtosecond laser irradiation on structure of UV grade fused silica

W. Zhou, T.T. Tan, L.E.N. Lim, H.Y. Zheng, S. Zhu, and L.M. Wang
Opt. Express 14(20) 9217-9222 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [Crossref]
  3. N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
    [Crossref]
  4. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
    [Crossref]
  5. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  6. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  7. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
    [Crossref] [PubMed]
  8. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
    [Crossref]
  9. K. Venkatakrishnan, D. Vipparty, and B. Tan, “Nanofibre fabrication by femtosecond laser ablation of silica glass,” Opt. Express 19(17), 15770–15776 (2011).
    [Crossref] [PubMed]
  10. M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
    [Crossref] [PubMed]
  11. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
    [Crossref]
  12. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
    [Crossref]
  13. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
    [Crossref]
  14. A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
    [Crossref]
  15. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).
  16. L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
    [Crossref]
  17. F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
    [Crossref]
  18. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
    [Crossref]
  19. A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80(23), 5145–5147 (1998).
    [Crossref]
  20. F. L. Galeener and G. Lucovsky, “Longitudinal optical vibrations in glasses: GeO2 and SiO2,” Phys. Rev. Lett. 37(22), 1474–1478 (1976).
    [Crossref]
  21. A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
    [Crossref]
  22. K. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th edition (John Wiley & Sons Inc., 2009).
  23. K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
    [Crossref]
  24. R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
    [Crossref] [PubMed]
  25. R. Salh, Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-ray Analysis, Infrared Spectroscopy Studies, in Crystalline Silicon - Properties and Uses, Sukumar Basu, eds. (InTech, 2011), pp. 173.
  26. H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).
  27. R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
    [Crossref] [PubMed]
  28. B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).
  29. J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
    [Crossref]
  30. F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4, 5035–5043 (2014).
    [Crossref] [PubMed]
  31. N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
    [Crossref]
  32. A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
    [Crossref]
  33. R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).
  34. C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2.,” Phys. Rev. B Condens. Matter 33(4), 2972–2974 (1986).
    [Crossref] [PubMed]
  35. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20(2), 934–940 (2012).
    [Crossref] [PubMed]
  36. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).
  37. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
    [Crossref]
  38. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
    [Crossref]
  39. H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42(12), 2079–2098 (2007).
    [Crossref]
  40. L. Skuja, “Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).
  41. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
    [Crossref]
  42. N. P. Bansal and R. H. Doremus, in Handbook of Glass Properties (Academic Press, Inc., 1986).
  43. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
    [Crossref]

2014 (1)

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4, 5035–5043 (2014).
[Crossref] [PubMed]

2013 (3)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (3)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

2009 (2)

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
[Crossref] [PubMed]

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

2008 (2)

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (4)

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42(12), 2079–2098 (2007).
[Crossref]

2006 (1)

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

2005 (1)

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

2003 (3)

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[Crossref]

A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2001 (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

1998 (3)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80(23), 5145–5147 (1998).
[Crossref]

L. Skuja, “Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

1997 (1)

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1996 (1)

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

1993 (1)

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

1986 (2)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2.,” Phys. Rev. B Condens. Matter 33(4), 2972–2974 (1986).
[Crossref] [PubMed]

1983 (3)

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
[Crossref]

1976 (1)

F. L. Galeener and G. Lucovsky, “Longitudinal optical vibrations in glasses: GeO2 and SiO2,” Phys. Rev. Lett. 37(22), 1474–1478 (1976).
[Crossref]

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Awazu, K.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[Crossref]

Barrio, R. A.

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

Bell, P. M.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Benoit, C.

A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
[Crossref]

Benoit, M.

A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
[Crossref]

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Boukenter, A.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Bressel, L.

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Buividas, R.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Burgin, J.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Bussière, B.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Cai, Y. Q.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Canioni, L.

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Car, R.

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80(23), 5145–5147 (1998).
[Crossref]

Cardinal, T.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Champagnon, B.

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Chow, P.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Coussa, C.

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

Coustillier, G.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

D’Amico, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

de Ligny, D.

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Deschamps, T.

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

Devine, R. A. B.

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2.,” Phys. Rev. B Condens. Matter 33(4), 2972–2974 (1986).
[Crossref] [PubMed]

Dubois, S.

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

Dussauze, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Elliott, R. J.

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

Eng, P.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Fargin, E.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Fiori, C.

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2.,” Phys. Rev. B Condens. Matter 33(4), 2972–2974 (1986).
[Crossref] [PubMed]

Foret, M.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Fukui, H.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Galeener, F. L.

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

F. L. Galeener and G. Lucovsky, “Longitudinal optical vibrations in glasses: GeO2 and SiO2,” Phys. Rev. Lett. 37(22), 1474–1478 (1976).
[Crossref]

Gamaly, E. G.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Geissberger, A. E.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

Glezer, N.

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Guenot, Ph.

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

Guillon, C.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Hehlen, B.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Hemley, R. J.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Hiramitsu, N.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20(2), 934–940 (2012).
[Crossref] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Hiraoka, N.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Hu, M. Y.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Huang, L.

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4, 5035–5043 (2014).
[Crossref] [PubMed]

Hübner, K.

A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
[Crossref]

Ikeda, R.

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

Ikushima, A. J.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Itina, T.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Kamitsos, E. I.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Kawazoe, H.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kitamura, K.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Kondo, K.

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Langot, P.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Le Parc, R.

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

Lehmann, A.

A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
[Crossref]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Leray, A.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Lin, J.-F.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Lipovskii, A.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Louchev, O. A.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

Lucovsky, G.

F. L. Galeener and G. Lucovsky, “Longitudinal optical vibrations in glasses: GeO2 and SiO2,” Phys. Rev. Lett. 37(22), 1474–1478 (1976).
[Crossref]

Mao, H. K.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Martinet, C.

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

Martinez, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Martínez, E.

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

Matsushita, S.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Mauclair, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Melosh, H. J.

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42(12), 2079–2098 (2007).
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20(2), 934–940 (2012).
[Crossref] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Mysen, B. O.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Ohnishi, M.

Okuchi, T.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Ouerdane, Y.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Papon, G.

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Pasquarello, A.

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80(23), 5145–5147 (1998).
[Crossref]

Petit, Y.

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Petrov, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Prendergast, D.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rahmani, A.

A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
[Crossref]

Richardson, K.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Richardson, M.

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Rode, A.

L. Bressel, D. de Ligny, E. G. Gamaly, A. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express 1(6), 1150–1158 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Rode, A. V.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Rodriguez, V.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Royon, A.

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Saito, K.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20(2), 934–940 (2012).
[Crossref] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Sanner, N.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Schumann, L.

A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
[Crossref]

Sentis, M.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Shimizu, M.

Shimodaira, N.

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20(2), 934–940 (2012).
[Crossref] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Sivakumar, M.

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
[Crossref] [PubMed]

Skuja, L.

L. Skuja, “Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

Smith, C.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

Spielmann, Ch.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Stoian, R.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Sugiura, H.

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

Tan, B.

K. Venkatakrishnan, D. Vipparty, and B. Tan, “Nanofibre fabrication by femtosecond laser ablation of silica glass,” Opt. Express 19(17), 15770–15776 (2011).
[Crossref] [PubMed]

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
[Crossref] [PubMed]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Trave, A.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Utèza, O.

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

Vallée, F.

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

Velpula, P. K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Venkatakrishnan, K.

K. Venkatakrishnan, D. Vipparty, and B. Tan, “Nanofibre fabrication by femtosecond laser ablation of silica glass,” Opt. Express 19(17), 15770–15776 (2011).
[Crossref] [PubMed]

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
[Crossref] [PubMed]

Vipparty, D.

Yamadaya, T.

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

Yamaji, M.

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Yoo, C.-S.

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

Yuan, F.

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4, 5035–5043 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

N. Sanner, O. Utèza, B. Bussière, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[Crossref]

J. Appl. Phys. (3)

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[Crossref]

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, “Densified silica glass after shock compression,” J. Appl. Phys. 80, 5145–5147 (1996).

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

J. Non-Crystal. Solids (3)

B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: path to new high-density glasses at ambient conditions,” J. Non-Crystal. Solids 353, 4208–4211 (2007).

R. Le Parc, B. Champagnon, Ph. Guenot, and S. Dubois, “Thermal annealing and density fluctuations in silica glass,” J. Non-Crystal. Solids 293–295, 366–369 (2001).

L. Skuja, “Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Crystal. Solids 239, 16–48 (1998).

J. Opt. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12(12), 124007 (2010).
[Crossref]

J. Phys. Chem. C (1)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys. 40(5), 1447–1459 (2007).
[Crossref]

Las. Chem. 2010, Article ID (1)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method,” Las. Chem. 2010, Article ID 148268, 1–15 (2010).

Laser Photonics Rev. (1)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 3(11), 1–10 (2013).

Meteorit. Planet. Sci. (1)

H. J. Melosh, “A hydrocode equation of state for SiO2,” Meteorit. Planet. Sci. 42(12), 2079–2098 (2007).
[Crossref]

Nanoscale Res. Lett. (1)

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition,” Nanoscale Res. Lett. 4(11), 1263–1266 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[Crossref]

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (6)

J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: femtosecond and Raman spectroscopy study,” Phys. Rev. B 78(18), 184203 (2008).
[Crossref]

A. Rahmani, M. Benoit, and C. Benoit, “Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study,” Phys. Rev. B 68(18), 184202 (2003).
[Crossref]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

J.-F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C.-S. Yoo, A. Trave, P. Eng, M. Y. Hu, and P. Chow, “Electronic bonding transition in compressed SiO2 glass,” Phys. Rev. B 75(1), 012201 (2007).
[Crossref]

N. Shimodaira, K. Saito, N. Hiramitsu, S. Matsushita, and A. J. Ikushima, “Effects of fictive temperature and halogen doping on the boson peak in silica glass,” Phys. Rev. B 71(2), 024209 (2005).
[Crossref]

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

Phys. Rev. B Condens. Matter (2)

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2.,” Phys. Rev. B Condens. Matter 33(4), 2972–2974 (1986).
[Crossref] [PubMed]

R. A. Barrio, F. L. Galeener, E. Martínez, and R. J. Elliott, “Regular ring dynamics in AX2 tetrahedral glasses,” Phys. Rev. B Condens. Matter 48(21), 15672–15689 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref] [PubMed]

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80(23), 5145–5147 (1998).
[Crossref]

F. L. Galeener and G. Lucovsky, “Longitudinal optical vibrations in glasses: GeO2 and SiO2,” Phys. Rev. Lett. 37(22), 1474–1478 (1976).
[Crossref]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Phys. Status Solidi (B) (1)

A. Lehmann, L. Schumann, and K. Hübner, “Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO–TO splittings of amorphous SiO2,” Phys. Status Solidi (B) 117(2), 689–698 (1983).
[Crossref]

Prog. Quantum Electron. (1)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Sci. Rep. (1)

F. Yuan and L. Huang, “Brittle to ductile transition in densified silica glass,” Sci. Rep. 4, 5035–5043 (2014).
[Crossref] [PubMed]

Other (5)

K. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th edition (John Wiley & Sons Inc., 2009).

R. Salh, Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-ray Analysis, Infrared Spectroscopy Studies, in Crystalline Silicon - Properties and Uses, Sukumar Basu, eds. (InTech, 2011), pp. 173.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011) (Invited).
[Crossref]

N. P. Bansal and R. H. Doremus, in Handbook of Glass Properties (Academic Press, Inc., 1986).

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in tailored materials,” Opt. Mater. Express1(5), 866–882 (2011) (invited).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Optical microscopy image of the experiment zone. The dashed-line rectangle shows the zone where surface nanofibers are formed. (b, c) SEM image of a laser-induced dome-shaped structure at the glass surface, due to sub-surface irradiation, resulting from the elastic-plastic deformation, respectively without and with the dome piercing (with no nanofiber formation, here). (d) SEM image of nanofibers at the surface of the crater corresponding to the bold-line rectangle in (a). Experimental conditions: 10 MHz laser @ 1030 nm, NA = 0.7, incident energy per pulse 5.7 TW.cm−2, 107 pulses. (e) Zoom showing winded nanofibers.
Fig. 2
Fig. 2 (a) Raman spectra for three different cases: pristine fused silica, the shell and the cavity of a laser-exposed area (irradiance of 4.5 TW.cm−2, 108 pulses). (b) Mapping of the Global Integrated Raman Intensity (GIRI) retrieved by integrating the spectral region from 220 to 700 cm−1. (c) Mapping of the D2 peak retrieved by integrating the spectral region from 575 to 700 cm−1. (d) Molecular oxygen distribution (peak at 1550 cm−1) inside the cavity. The surface corresponds to the position z = 0.
Fig. 3
Fig. 3 Raman mapping of the modifications for irradiance of 4.5 TW.cm−2 and different number of pulses. Columns 2, 3, and 4 are the Global Integrated Raman Intensity (GIRI), the D2 peak and the molecular oxygen peak (1550 cm−1), respectively, and lines 2, 3, and 4 correspond to 104, 106, and 108 pulses, respectively. All images are in µm. Zero in the left axis corresponds to the surface. Femtosecond laser beam profile is present by red dotted curves.
Fig. 4
Fig. 4 Raman mapping of the modifications for 104 pulses and different pulse irradiances. Columns 2, 3, and 4 are the GIRI, the D2 peak and the molecular oxygen peak (1550 cm−1), respectively, and lines 2, 3, and 4 correspond to 3.0 TW.cm−2, 4.5 TW.cm−2, 5.9 TW.cm−2 pulse irradiances, respectively. All images are in µm. Zero in the left axis corresponds to the surface. Femtosecond laser beam profile is present by red dotted curves.
Fig. 5
Fig. 5 Caption description: illustration of the evolution of silica under laser irradiation for an increasing number of pulses, including normal-density (grey color), high-density (orange shell) and low-density (white core) areas. (a) Pristine material with the initial focused beam. (b) Creation of a low-density volume at the focusing position (depth z = 0), surrounded by an over-densed shell, embedding laser-induced strains (grid). (c) Translation of the focusing position z in the forward direction, leading to a translation of the low-density area. Note that the previously induced low-density area at the initial focus point has typically retrieved its initial density, while it highly keeps the memory of the laser modification and accumulated strain. Such specific silica with expansion and recompression history seems to be where most of the molecular O2 appears. (d) On-going process of moving focus in the forward direction, and the associated effects of both local densities and local strains, with additional elastic-plastic deformations that lead to the formation of a dome at the surface. (e) On-going process of moving focus in the forward direction, with partial destruction of the dome at the surface leading to the complete release of the produced molecular oxygen.

Metrics