Abstract

The design and manufacturing of high efficiency and reliable volume phase holographic optical elements require photosensitive material where it is possible to finely control the refractive index modulation. Bayfol HX photopolymers show this feature together with other interesting advantages, in particular the self-developing and the large refractive index modulation. In this paper, the design of Volume Phase Holographic Gratings (VPHGs) is reported underlying the relationship of gratings’ performances with the refractive index modulation. The trend of this property with the change of the laser power density and the ratio of the two writing beams is shown. Based on these results, VPHGs for astronomical instrumentation have been designed and manufactured.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications

Julia Marín-Sáez, Jesús Atencia, Daniel Chemisana, and María-Victoria Collados
Opt. Express 24(6) A720-A730 (2016)

Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration

Julia Marín-Sáez, Jesús Atencia, Daniel Chemisana, and María-Victoria Collados
Opt. Express 26(10) A398-A412 (2018)

Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%

Naoaki Suzuki and Yasuo Tomita
Appl. Opt. 43(10) 2125-2129 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Close, “Holographic Optical Elements,” Opt. Eng. 14(5), 145402 (1975).
    [Crossref]
  2. J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
    [Crossref]
  3. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
    [Crossref]
  4. G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
    [Crossref] [PubMed]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
    [Crossref]
  7. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14(9), 4175–4181 (2006).
    [Crossref] [PubMed]
  8. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
    [Crossref]
  9. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref] [PubMed]
  10. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  11. I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
    [Crossref]
  12. P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
    [Crossref]
  13. D. E. Battey, J. B. Slater, R. Wludyka, H. Owen, D. M. Pallister, and M. D. Morris, “Axial Transmissive f/1.8 Imaging Raman Spectrograph with Volume-Phase Holographic Filter and Grating,” Appl. Spectrosc. 47(11), 1913–1919 (1993).
    [Crossref]
  14. L. W. Xiong, S. Liu, and B. X. Peng, “Mechanism of hologram formation in dichromated gelatin with x-ray photoelectron spectroscopy,” Appl. Opt. 37(17), 3678–3684 (1998).
    [Crossref] [PubMed]
  15. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
    [Crossref]
  16. A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
    [Crossref]
  17. F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [Crossref] [PubMed]
  18. M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
    [Crossref]
  19. R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
    [Crossref]
  20. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
    [Crossref]
  21. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
    [Crossref] [PubMed]
  22. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption,” J. Opt. Soc. Am. B 31(11), 2638–2647 (2014).
    [Crossref]
  23. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648–2656 (2014).
    [Crossref]
  24. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  25. S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
    [Crossref]
  26. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17(11), 1757–1759 (1978).
    [Crossref] [PubMed]
  27. F. Bruder and T. Fäcke, “Materials in optical data storage,” Int. J. Mater. Res. 101(2), 199–215 (2010).
    [Crossref]
  28. H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
    [Crossref]
  29. H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
    [Crossref]
  30. L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
    [Crossref]
  31. F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
    [Crossref]
  32. F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
    [Crossref]
  33. R. Jallapuram, I. Naydenova, H. J. Byrne, S. Martin, R. Howard, and V. Toal, “Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer,” Appl. Opt. 47(2), 206–212 (2008).
    [Crossref] [PubMed]
  34. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
    [Crossref] [PubMed]
  35. F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
    [Crossref]
  36. http://www.not.iac.es/instruments/alfosc/
  37. J. Allington-Smith, “Spectroscopy,” in Optics in Astrophysics, R. Foy, and F. C. Foy, eds. (Springer, 2005).

2015 (2)

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

2014 (2)

2013 (3)

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2012 (1)

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

2011 (5)

2010 (2)

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F. Bruder and T. Fäcke, “Materials in optical data storage,” Int. J. Mater. Res. 101(2), 199–215 (2010).
[Crossref]

2009 (2)

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]

2008 (3)

R. Jallapuram, I. Naydenova, H. J. Byrne, S. Martin, R. Howard, and V. Toal, “Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer,” Appl. Opt. 47(2), 206–212 (2008).
[Crossref] [PubMed]

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (3)

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
[Crossref]

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (2)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]

2000 (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

1998 (1)

1997 (1)

J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
[Crossref]

1993 (1)

1978 (1)

1975 (1)

D. H. Close, “Holographic Optical Elements,” Opt. Eng. 14(5), 145402 (1975).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Arns, J. A.

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Baldry, I. K.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
[Crossref]

Barden, S. C.

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Battey, D. E.

Belendez, A.

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Berneth, H.

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

Bertarelli, C.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Bianco, A.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Bland-Hawthorn, J.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
[Crossref]

Bruder, F.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

F. Bruder and T. Fäcke, “Materials in optical data storage,” Int. J. Mater. Res. 101(2), 199–215 (2010).
[Crossref]

Bruder, F. K.

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Bruder, F.-K.

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Burge, J. H.

J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
[Crossref]

Burnham, D. R.

Byrne, H. J.

Close, D. H.

D. H. Close, “Holographic Optical Elements,” Opt. Eng. 14(5), 145402 (1975).
[Crossref]

Colburn, W. S.

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Cole, G. C.

J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
[Crossref]

Curtis, K.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Dassa, G.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Deuber, F.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Dhar, L.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Fäcke, T.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

F. Bruder and T. Fäcke, “Materials in optical data storage,” Int. J. Mater. Res. 101(2), 199–215 (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Fehniger, M. J.

J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
[Crossref]

Fernandez, E.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Fernandez, R.

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Frances, J.

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

Fuentes, R.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Gailly, P.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Gallego, S.

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Gleeson, M. R.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Guo, J.

Habraken, S.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Hagen, R.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

Hoenel, D.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Hönel, D.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

Howard, R.

Jallapuram, R.

Jamar, C.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Jurbergs, D.

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kogure, M.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]

Lemaire, P.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Li, H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Liu, S.

Martin, S.

McGloin, D.

Moharam, M. G.

Morris, M. D.

Naydenova, I.

Norwood, R. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]

Orselli, E.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

Ortuno, M.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Osten, W.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Owen, H.

Pallister, D. M.

Pariani, G.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref] [PubMed]

Pascual, I.

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

Peng, B. X.

Peyghambarian, N.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Pruss, C.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Qi, Y.

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

Rewitz, C.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

Robertson, J. G.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
[Crossref]

Roelle, T.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Rölle, T.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Sheridan, J. T.

Slater, J. B.

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Thomas, J.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

Toal, V.

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Voorakaranam, R.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Walze, G.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

Wang, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Weiser, M. S.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Weiser, M.-S.

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Williams, J. B.

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Wludyka, R.

Xiong, L. W.

Yamamoto, M.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Young, L.

Zanutta, A.

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

Zerbi, G.

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Int. J. Mater. Res. (1)

F. Bruder and T. Fäcke, “Materials in optical data storage,” Int. J. Mater. Res. 101(2), 199–215 (2010).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Photopolym. Sci. Technol. (1)

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, M. Kogure, T. Roelle, and M.-S. Weiser, “Full-Color Self-processing Holographic Photopolymers with High Sensitivity in Red - The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Technol. 22(2), 257–260 (2009).
[Crossref]

Nat. Photonics (1)

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Nature (2)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1–3), 77–82 (2000).
[Crossref]

Opt. Eng. (3)

D. H. Close, “Holographic Optical Elements,” Opt. Eng. 14(5), 145402 (1975).
[Crossref]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
[Crossref]

Opt. Express (4)

Opt. Mater. (2)

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35(3), 668–673 (2013).
[Crossref]

R. Fernandez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Characterization and comparison of different photopolymers for low spatial frequency recording,” Opt. Mater. 44, 18–24 (2015).
[Crossref]

Optik (Stuttg.) (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]

Proc. SPIE (6)

A. Bianco, G. Pariani, A. Zanutta, and C. Bertarelli, “Materials for VPHGs: practical considerations in the case of astronomical instrumentation,” Proc. SPIE 8450, 84502W (2012).
[Crossref]

J. H. Burge, M. J. Fehniger, and G. C. Cole, “Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces,” Proc. SPIE 3134, 379–389 (1997).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hoenel, D. Jurbergs, T. Roelle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Publ. Astron. Soc. Pac. (2)

S. C. Barden, J. A. Arns, W. S. Colburn, and J. B. Williams, “Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume phase holographic gratings: polarization properties and diffraction efficiency,” Publ. Astron. Soc. Pac. 116(819), 403–414 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001).
[Crossref]

Other (2)

http://www.not.iac.es/instruments/alfosc/

J. Allington-Smith, “Spectroscopy,” in Optics in Astrophysics, R. Foy, and F. C. Foy, eds. (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Simulations of diffraction efficiency, for unpolarized light, of VPHGs with 2000 l/mm (A) and 500 l/mm (B) as function of d – Δn couples. The incidence angle is the Bragg angle at 0.5 μm.
Fig. 2
Fig. 2 Scheme reporting the rules for designing high efficient and wideband VPHGs in the dΔn space.
Fig. 3
Fig. 3 UV-vis-NIR spectra of the RGB Bayfol HX (16 μm) photopolymeric material before (solid line) and after photo-bleaching (dashed line).
Fig. 4
Fig. 4 Δn as function of the mean value of the intensity of the two writing arms. The total dose was kept constant at 42 mJ/cm2 (referred to double beam writing process). Continuous lines are a linear fit of the data.
Fig. 5
Fig. 5 Δn as function of the ratio between the power of two writing beams P1 and P2 for a 1000 l/mm grating. The dose was kept constant at 42.8 mJ/cm2 (referred to double beam writing process).
Fig. 6
Fig. 6 RCWA simulations with different refractive index modulation values (reported in the legend) for a 10 μm thick grating and an incidence angle of 13.4°. A) Wavelength range for the BLUE device (1080 l/mm); B) wavelength range for the GREEN device (820 l/mm).
Fig. 7
Fig. 7 Efficiency measurements at fixed wavelength (s-polarized), fitted with RCWA, for the two VPHGs composing the GRISMs for the spectrograph ALFOSC; A) is the BLUE grating, B) is the GREEN grating. Inside the inlets are reported the calculated values of refractive index modulation. The vertical dotted lines indicate the angle at which the gratings work in the GRISM configuration. The light is deviated by the prisms and enters the VPHGs at 13.4°.
Fig. 8
Fig. 8 Diffraction efficiency measurements (unpolarized light) and fit of the data of the two complete NOT devices; A) is the BLUE grism, B) is the GREEN grism.
Fig. 9
Fig. 9 Photo of the two dispersive elements in their housing ready to be mounted into the spectrograph.
Fig. 10
Fig. 10 Comparison of photometric-standard stars’ spectra. Total system throughput of the NOT telescope with BLUE (A) and GREEN (B) VPHG devices and with already mounted dispersive elements (Grism 7 and Grism 16).

Tables (2)

Tables Icon

Table 1 NOT’s GRISMs main specifications: (1) Central wavelength of the grating; (2) Linear dispersion of the grating; (3) Resolution, R = λ/Δλ; (4) Wavelength range; (5) minimum 1-st order diffraction efficiency at the peak wavelength; (6) minimum 1-st order diffraction efficiency at the wavelength range edges.

Tables Icon

Table 2 NOT’s delivered GRISMs main specifications summary: (1) Working central wavelength of the grating; (2) pixel dispersion of the grating; (3) Wavelength range; (4) Resolution, R = λ/Δλ; (5) pitch of the grating; (6) final refractive index modulation of the grating.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= 1 2 sin 2 (   π Δn d λ cos α 2B   )+ 1 2 sin 2 (   π Δn d λ cos α 2B cos(2 α 2B )  ).
Δλ λ cot α Λ d .
ρ= λ 2 Λ 2 n Δn .

Metrics