Abstract

The third-order nonlinear optical responses of tetrafluoroborate 1-n-butyl-methylimidazolium (BMI.BF4) and colloidal Ag nanoparticles dispersed in this medium were investigated. Hybrid organic-metallic colloids consisting of silver nanoparticles dispersed in BMI.BF4 were synthesized. Using the thermally managed Z-scan technique, the electronic contribution to the nonlinear refractive indexes of the BMI.BF4 and colloids with two different nanoparticles filling factors were measured, as well as the media's nonlinear absorption. The performance of these systems for all-optical switching was also evaluated. The obtained results indicate that these are promising candidates for the development of nonlinear optical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One photon nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution

Diego Rativa, R. E. de Araujo, and A. S. L. Gomes
Opt. Express 16(23) 19244-19252 (2008)

Third-order nonlinear optical properties exhibited by a bilayer configuration of silver nanoparticles integrated to silicon nanocrystals embedded in ion-implanted silica

Alejandra López-Suárez, Carlos Torres-Torres, Bonifacio Can-Uc, Raúl Rangel-Rojo, Carlos E. Valencia, and Alicia Oliver
J. Opt. Soc. Am. B 32(5) 805-811 (2015)

Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda
Opt. Mater. Express 1(5) 980-989 (2011)

References

  • View by:
  • |
  • |
  • |

  1. O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda, “Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express 4(1), 92–100 (2014).
    [Crossref]
  2. M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
    [Crossref]
  3. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
    [Crossref]
  4. E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
    [Crossref] [PubMed]
  5. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
    [Crossref]
  6. H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
    [Crossref]
  7. P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
    [Crossref]
  8. P. Sudheesh and K. Chandrasekharan, “chi((3)) measurements in Schiffs base derivatives: Effect of metal nanoparticles,” Solid State Commun. 152(4), 268–272 (2012).
    [Crossref]
  9. A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
    [Crossref]
  10. R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
    [Crossref]
  11. M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
    [Crossref]
  12. J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
    [Crossref]
  13. M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
    [Crossref]
  14. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  15. O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
    [Crossref]
  16. D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta 607(2), 126–135 (2008).
    [Crossref] [PubMed]
  17. J. Dupont and P. A. Z. Suarez, “Physico-chemical processes in imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 8(21), 2441–2452 (2006).
    [Crossref] [PubMed]
  18. J. Dupont and J. D. Scholten, “On the structural and surface properties of transition-metal nanoparticles in ionic liquids,” Chem. Soc. Rev. 39(5), 1780–1804 (2010).
    [Crossref] [PubMed]
  19. T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
    [Crossref]
  20. S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
    [Crossref]
  21. J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
    [Crossref] [PubMed]
  22. C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
    [Crossref] [PubMed]
  23. R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
    [Crossref]
  24. C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
    [Crossref]
  25. J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
    [Crossref] [PubMed]
  26. M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
    [Crossref] [PubMed]
  27. P. Dash and R. W. J. Scott, “1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids,” Chem. Commun. (Camb.) 812–814(7), 812–814 (2009).
    [Crossref] [PubMed]
  28. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  29. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
    [Crossref]
  30. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
    [Crossref]
  31. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005).
    [Crossref] [PubMed]
  32. A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, “Thermally managed eclipse Z-scan,” Opt. Express 15(4), 1712–1717 (2007).
    [Crossref] [PubMed]
  33. C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
    [Crossref]
  34. E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
    [Crossref] [PubMed]
  35. G. Stegeman, “Applications of Organic Materials in Third-Order Nonlinear Optics, ” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata, Eds. (CRC, 1997), pp. 799–812.
  36. V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
    [Crossref] [PubMed]
  37. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [Crossref] [PubMed]
  38. L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
    [Crossref]

2014 (2)

2013 (2)

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
[Crossref]

2012 (3)

P. Sudheesh and K. Chandrasekharan, “chi((3)) measurements in Schiffs base derivatives: Effect of metal nanoparticles,” Solid State Commun. 152(4), 268–272 (2012).
[Crossref]

M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

2010 (7)

J. Dupont and J. D. Scholten, “On the structural and surface properties of transition-metal nanoparticles in ionic liquids,” Chem. Soc. Rev. 39(5), 1780–1804 (2010).
[Crossref] [PubMed]

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
[Crossref] [PubMed]

2009 (1)

P. Dash and R. W. J. Scott, “1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids,” Chem. Commun. (Camb.) 812–814(7), 812–814 (2009).
[Crossref] [PubMed]

2008 (5)

D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta 607(2), 126–135 (2008).
[Crossref] [PubMed]

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
[Crossref] [PubMed]

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

2007 (3)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, “Thermally managed eclipse Z-scan,” Opt. Express 15(4), 1712–1717 (2007).
[Crossref] [PubMed]

2006 (3)

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

J. Dupont and P. A. Z. Suarez, “Physico-chemical processes in imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 8(21), 2441–2452 (2006).
[Crossref] [PubMed]

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

2005 (4)

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[Crossref]

C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
[Crossref] [PubMed]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005).
[Crossref] [PubMed]

2002 (2)

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
[Crossref] [PubMed]

1999 (2)

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[Crossref]

1996 (1)

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
[Crossref] [PubMed]

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Alencar, M. A. R. C.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

Aroca, R. F.

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

Astilean, S.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Baia, L.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Baia, M.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Barbosa-Silva, R.

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Brito-Silva, A. M.

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
[Crossref] [PubMed]

L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

Cassol, C. C.

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

Castro, H. P. S.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

Challa, S.

C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
[Crossref] [PubMed]

Chandrasekharan, K.

P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
[Crossref]

P. Sudheesh and K. Chandrasekharan, “chi((3)) measurements in Schiffs base derivatives: Effect of metal nanoparticles,” Solid State Commun. 152(4), 268–272 (2012).
[Crossref]

Chehrghani, A.

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Correia, R. R. B.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Crespo-Sosa, A.

Dash, P.

P. Dash and R. W. J. Scott, “1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids,” Chem. Commun. (Camb.) 812–814(7), 812–814 (2009).
[Crossref] [PubMed]

Davis, J. H.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

de Araujo, C. B.

L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

de Araujo, R. E.

de Araújo, C. B.

de Souza, R. F.

J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
[Crossref] [PubMed]

Dupont, J.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

J. Dupont and J. D. Scholten, “On the structural and surface properties of transition-metal nanoparticles in ionic liquids,” Chem. Soc. Rev. 39(5), 1780–1804 (2010).
[Crossref] [PubMed]

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

J. Dupont and P. A. Z. Suarez, “Physico-chemical processes in imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 8(21), 2441–2452 (2006).
[Crossref] [PubMed]

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
[Crossref] [PubMed]

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

Ebeling, G.

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Falcão-Filho, E. L.

Falconieri, M.

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[Crossref]

Ferrera, B.

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

Fichtner, P. F. P.

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

Filho, E. L.

Fonseca, G. S.

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

Franko, M.

C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
[Crossref] [PubMed]

Galembeck, A.

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

García-Ramírez, E. V.

Gelesky, M. A.

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Gnoli, A.

Gomes, A. S. L.

Gomez, L. A.

L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Havar, M. S.

M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

Hayamizu, K.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Hickmann, J. M.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

Hollenkamp, A. F.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Huang, J. H.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Huyeh, M. R.

M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

Huynh, T. D.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Ivaska, A.

D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta 607(2), 126–135 (2008).
[Crossref] [PubMed]

Janiak, C.

E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
[Crossref] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Karimzadeh, R.

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

Kobayashi, T.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Kobayashi, Y.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Lewis, A.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

MacCraith, B. D.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

Machado, G.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Magno, W. C.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Mansour, N.

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

Markel, V. A.

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
[Crossref] [PubMed]

Mattson, K.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

McDonagh, C.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

Meneghetti, M. R.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

Migowski, P.

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

Mitsugi, T.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Miyashiro, H.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Morais, J.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

Mota-Santiago, P.

Nooney, R.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

Oliveira, M. M.

Oliver, A.

Palpant, B.

M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

Perea-Lopez, N.

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

Poliakov, E. Y.

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
[Crossref] [PubMed]

Popp, J.

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Rativa, D.

Razzari, L.

Redel, E.

E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
[Crossref] [PubMed]

Reyes-Esqueda, J.-A.

Righini, M.

Rubim, J. C.

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

Ruther, T.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Salter, E. A.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Salvetti, G.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[Crossref]

Sánchez-Dena, O.

Santiago-Jacinto, P.

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

Santos, C. E. A.

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

Scholten, J. D.

J. Dupont and J. D. Scholten, “On the structural and surface properties of transition-metal nanoparticles in ionic liquids,” Chem. Soc. Rev. 39(5), 1780–1804 (2010).
[Crossref] [PubMed]

Scott, R. W. J.

P. Dash and R. W. J. Scott, “1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids,” Chem. Commun. (Camb.) 812–814(7), 812–814 (2009).
[Crossref] [PubMed]

Seki, S.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Serizawa, N.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Siji Narendran, N. K.

P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
[Crossref]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Sobral-Filho, R. G.

Souza, R. F.

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

Stranik, O.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

Suarez, P. A. Z.

J. Dupont and P. A. Z. Suarez, “Physico-chemical processes in imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 8(21), 2441–2452 (2006).
[Crossref] [PubMed]

J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
[Crossref] [PubMed]

Sudheesh, P.

P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
[Crossref]

P. Sudheesh and K. Chandrasekharan, “chi((3)) measurements in Schiffs base derivatives: Effect of metal nanoparticles,” Solid State Commun. 152(4), 268–272 (2012).
[Crossref]

Takei, K.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tamayo-Rivera, L.

Teixeira, S. R.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

Thomann, R.

E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
[Crossref] [PubMed]

Torkamany, M. J.

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Torres-Martinez, R.

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

Torres-Torres, C.

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

Tran, C. D.

C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
[Crossref] [PubMed]

Trejo-Valdez, M.

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

Trindade, F. A.

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

Tsuzuki, S.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Umebayashi, Y.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Umpierre, A. P.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Watanabe, M.

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Wei, D.

D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta 607(2), 126–135 (2008).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wender, H.

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

Wierzbicki, A.

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Zarbin, A. J. G.

Adv. Synth. Catal. (1)

C. C. Cassol, G. Ebeling, B. Ferrera, and J. Dupont, “A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids,” Adv. Synth. Catal. 348(1–2), 243–248 (2006).
[Crossref]

Anal. Chem. (1)

C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Anal. Chem. 77(22), 7442–7447 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

D. Wei and A. Ivaska, “Applications of ionic liquids in electrochemical sensors,” Anal. Chim. Acta 607(2), 126–135 (2008).
[Crossref] [PubMed]

Appl. Phys. B (3)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[Crossref]

L. A. Gomez, C. B. de Araujo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

Appl. Phys. Lett. (1)

M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88(14), 143121 (2006).
[Crossref]

Chem. Commun. (Camb.) (1)

P. Dash and R. W. J. Scott, “1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids,” Chem. Commun. (Camb.) 812–814(7), 812–814 (2009).
[Crossref] [PubMed]

Chem. Mater. (1)

T. Ruther, T. D. Huynh, J. H. Huang, A. F. Hollenkamp, E. A. Salter, A. Wierzbicki, K. Mattson, A. Lewis, and J. H. Davis., “Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes,” Chem. Mater. 22(3), 1038–1045 (2010).
[Crossref]

Chem. Phys. (1)

C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chem. Phys. 403, 33–36 (2012).
[Crossref]

Chem. Rev. (1)

J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chem. Rev. 102(10), 3667–3692 (2002).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. Dupont and J. D. Scholten, “On the structural and surface properties of transition-metal nanoparticles in ionic liquids,” Chem. Soc. Rev. 39(5), 1780–1804 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Inorg. Chem. (1)

E. Redel, R. Thomann, and C. Janiak, “First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume,” Inorg. Chem. 47(1), 14–16 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions,” J. Am. Chem. Soc. 124(16), 4228–4229 (2002).
[Crossref] [PubMed]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. R. Huyeh, M. S. Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114(18), 183104 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

J. C. Rubim, F. A. Trindade, M. A. Gelesky, R. F. Aroca, and J. Dupont, “Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF(4)) Ionic Liquid on Silver Surfaces,” J. Phys. Chem. C 112(49), 19670–19675 (2008).
[Crossref]

M. Trejo-Valdez, R. Torres-Martinez, N. Perea-Lopez, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the Two-Photon Absorption to the Third Order Nonlinearity of Au Nanoparticles Embedded in TiO2 Films and in Ethanol Suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” J. Phys. Condens. Matter 20(15), 155102 (2008).
[Crossref]

J. Power Sources (1)

S. Seki, T. Kobayashi, N. Serizawa, Y. Kobayashi, K. Takei, H. Miyashiro, K. Hayamizu, S. Tsuzuki, T. Mitsugi, Y. Umebayashi, and M. Watanabe, “Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries,” J. Power Sources 195(18), 6207–6211 (2010).
[Crossref]

Laser Phys. (1)

A. Chehrghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: saturable and reverse saturable absorption,” Laser Phys. 24(1), 015901 (2014).
[Crossref]

Nano Lett. (1)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Laser Technol. (1)

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

Opt. Mater. (1)

P. Sudheesh, N. K. Siji Narendran, and K. Chandrasekharan, “Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles,” Opt. Mater. 36(2), 304–309 (2013).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

J. Dupont and P. A. Z. Suarez, “Physico-chemical processes in imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 8(21), 2441–2452 (2006).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2437–2449 (1996).
[Crossref] [PubMed]

Plasmonics (1)

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[Crossref]

Solid State Commun. (1)

P. Sudheesh and K. Chandrasekharan, “chi((3)) measurements in Schiffs base derivatives: Effect of metal nanoparticles,” Solid State Commun. 152(4), 268–272 (2012).
[Crossref]

Other (1)

G. Stegeman, “Applications of Organic Materials in Third-Order Nonlinear Optics, ” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata, Eds. (CRC, 1997), pp. 799–812.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) TEM micrograph of Ag-BMI.BF4. (b) UV-VIS-NIR absorption spectra of the mother solution (black line), as prepared, and pure BMI.BF4 (red line), measured within a 5 mm quartz cell. (c) UV-VIS-NIR absorption spectra of MS (solid line), AG1 (dash line), AG2 (dot line) colloids and pure BMI.BF4 (dash-dot line), measured within a 1 mm quartz cuvette.
Fig. 2
Fig. 2 Closed aperture Z-scan curves at t = 0 of (a) pure BMI.BF4, (b) AG2 and (c) AG1 samples. Open circles correspond to the experimental data and the red lines are the fitting curves obtained with Eq. (1).
Fig. 3
Fig. 3 Open aperture Z-scan curves of (a) AG1 and (b) AG2 samples. Open circles correspond to the experimental data and the red line is the fitting curve obtained with Eq. (2).

Tables (1)

Tables Icon

Table 1 Optical properties of the investigated samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Tr( z )1+ 4Δ Φ 0 ( z/ z 0 ) [ ( z/ z 0 ) 2 +9 ][ ( z/ z 0 ) 2 +1 ] ,
Tr( z )= m=0 [ q 0 ( z,0 ) ] ( m+1 ) 3/2 m ,

Metrics