Abstract

We report the effects of vapor-confined face-to-face annealing (VC-FTFA), where mica is inserted between two films and annealed using FTFA method, on the optical, photoresponse, and electrical properties of Sn-doped ZnO (n-ZnO:Sn) films deposited on a p-Si substrate using the sol-gel spin-coating method. The near-band-edge photoluminescence emission intensity is increased by a factor of 445. The photocurrents of the sample 1, 2, and 3 were 1.95 × 10−4, 1.14 × 10−3, and 3.47 × 10−3 A, respectively. The turn-on voltage of the n-ZnO:Sn film/p-Si heterojunction annealed using the VC-FTFA method was measured to be ~3.6 V, which is smaller than that of the heterojunction annealed in open air (~4.2 V). Furthermore, in n-ZnO:Sn film/p-Si heterojunctions annealed in open air and using the VC-FTFA method, the currents at 4.5 V are 4.4 and 17.9 mA, respectively. Our method could provide pathway to the easy fabrication of optoelectronic devices based on an ZnO annealed using the VC-FTFA method.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

6 January 2016: A correction was made to the title.


OSA Recommended Articles
Effects of ZnO seed layer annealing temperature on the properties of n-ZnO NWs/Al2O3/p-Si heterojunction

Yu-Zhu Gu, Hong-Liang Lu, Yuan Zhang, Peng-Fei Wang, Shi-Jin Ding, and David Wei Zhang
Opt. Express 23(19) 24456-24463 (2015)

Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al2O3 buffer layer

Hong-Liang Lu, Yu-Zhu Gu, Yuan Zhang, Xin-Yan Liu, Peng-Fei Wang, Qing-Qing Sun, Shi-Jin Ding, and David Wei Zhang
Opt. Express 22(18) 22184-22189 (2014)

Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions

Zu-Po Yang, Zhong-Han Xie, Chia-Ching Lin, and Ya-Ju Lee
Opt. Mater. Express 5(2) 399-407 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
    [Crossref] [PubMed]
  2. H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
    [Crossref]
  3. N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
    [Crossref]
  4. Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
    [Crossref] [PubMed]
  5. K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
    [Crossref]
  6. C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
    [Crossref]
  7. J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
    [Crossref]
  8. J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
    [Crossref]
  9. Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
    [Crossref]
  10. H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
    [Crossref] [PubMed]
  11. S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” J. Phys. D Appl. Phys. 40(22), 6902–6907 (2007).
    [Crossref]
  12. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
    [Crossref] [PubMed]
  13. A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
    [Crossref]
  14. A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
    [Crossref]
  15. S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
    [Crossref] [PubMed]
  16. R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
    [Crossref]
  17. K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
    [Crossref]
  18. H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
    [Crossref]
  19. C.-C. Lin and Y.-Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate,” Mater. Chem. Phys. 113(1), 334–337 (2009).
    [Crossref]
  20. Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
    [Crossref]
  21. G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
    [Crossref] [PubMed]
  22. L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
    [Crossref]

2014 (4)

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

2013 (6)

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
[Crossref] [PubMed]

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

2012 (3)

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
[Crossref]

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

2010 (1)

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

2009 (2)

C.-C. Lin and Y.-Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate,” Mater. Chem. Phys. 113(1), 334–337 (2009).
[Crossref]

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

2008 (1)

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

2007 (2)

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” J. Phys. D Appl. Phys. 40(22), 6902–6907 (2007).
[Crossref]

2005 (1)

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

2003 (1)

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

1985 (1)

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

Ahmed, N. M.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Al-Hardan, N. H.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Bae, S. Y.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Basak, D.

S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” J. Phys. D Appl. Phys. 40(22), 6902–6907 (2007).
[Crossref]

Blakesley, J. C.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Castro, J. M.

J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
[Crossref]

Chang, C.-Y.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Chang, S. J.

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Chen, K. J.

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Chen, S. S.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Chen, W.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Chen, Y. T.

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Cipolli, R. J.

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

Deng, R.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Ding, K.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Ding, P.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Dvorak, M.

M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
[Crossref] [PubMed]

Fan, B.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Gordillo, G.

J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
[Crossref]

Goto, M.

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

Greenham, N. C.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Gupta, V.

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

Hamid, M. A. A.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Hark, S. J.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

He, H. P.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Henderson, W. B.

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

Hsieh, W.-F.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Hu, Q. C.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Hu, R.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Hu, Z. S.

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Huang, F.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Huang, H.-M.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Huang, J. Y.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Hung, F. Y.

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Hwang, S. M.

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

Jalar, A.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Ji, L. W.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Jiang, H.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Jin, Y.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Joo, J.

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

Kagawa, Y.

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

Kanber, H.

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

Kang, J. H.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Kato, R.

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

Kaur, G.

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

Keng, L. K.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Kojima, T.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Lan, Y.-P.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Li, B.-H.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Li, Y.-Y.

C.-C. Lin and Y.-Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate,” Mater. Chem. Phys. 113(1), 334–337 (2009).
[Crossref]

Li, Z.

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Liang, Y.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Lim, J. H.

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

Lin, C. S.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Lin, C.-C.

C.-C. Lin and Y.-Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate,” Mater. Chem. Phys. 113(1), 334–337 (2009).
[Crossref]

Lin, W. W.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Liu, J.-S.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Liu, M.

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Liu, S.

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Liu, Z.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Lu, B.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Lu, J. G.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Lu, T.-C.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Mridha, S.

S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” J. Phys. D Appl. Phys. 40(22), 6902–6907 (2007).
[Crossref]

Na, C. W.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Nakamura, A.

Oyola, J. S.

J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
[Crossref]

Paliwal, A.

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

Pan, X. H.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Park, G. C.

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

Park, J.

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

Pei, Y.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Peng, S. M.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Qiao, Q.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Rajan, A.

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

Shamsudin, R.

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Shan, C.-X.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Shen, D.-Z.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Shen, H.

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

Su, Y. K.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Sun, B.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Tanaka, Y.

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

Temmyo, J.

Tomar, M.

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

Tong, C.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Tu, L.-M.

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

Wang, G.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Wang, J.

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Wang, W. B.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Wei, S.-H.

M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
[Crossref] [PubMed]

Whelan, J. M.

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

Wu, C. Z.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Wu, Z.

M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
[Crossref] [PubMed]

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Xu, H.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Xu, Y.

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

Yadav, H. K.

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

Yang, J.

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

Ye, Z. Z.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Young, S. J.

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Zang, Z.

Zeng, Y.

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Zhang, E.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Zhang, H. H.

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Zhang, J. Y.

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

Zhang, X.

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

Appl. Phys. Lett. (2)

K. Ding, Q. C. Hu, J. Y. Zhang, W. W. Lin, C. S. Lin, and F. Huang, “Aluminum doping induced columnar growth of homoepitaxial ZnO films by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 103(14), 141907 (2013).
[Crossref]

L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Wang, “Ultraviolet photodetectors based on selectivity grown ZnO nanorod arrays,” Appl. Phys. Lett. 94(20), 203106 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Rajan, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic enhancement of optical absorption of UV radiation by Au nanoparticles dispersed on ZnO thin film,” Appl. Phys., A Mater. Sci. Process. 116(3), 913–919 (2014).
[Crossref]

Cryst. Growth Des. (1)

C.-Y. Chang, H.-M. Huang, Y.-P. Lan, T.-C. Lu, L.-M. Tu, and W.-F. Hsieh, “Study of nonpolar GaN/ZnO heterostructures grown by molecular beam epitaxy,” Cryst. Growth Des. 13(7), 3098–3102 (2013).
[Crossref]

CrystEngComm (1)

J. Yang, Y. Pei, R. Hu, B. Fan, C. Tong, T. Kojima, Z. Wu, H. Jiang, and G. Wang, “Morphology controlled synthesis of crystalline ZnO film by MOCVD: from hexagon to rhombus,” CrystEngComm 14(24), 8345–8348 (2012).
[Crossref]

J. Appl. Phys. (2)

Y. Xu, M. Goto, R. Kato, Y. Tanaka, and Y. Kagawa, “Thermal conductivity of ZnO thin film produced by reactive sputtering,” J. Appl. Phys. 111(8), 084320 (2012).
[Crossref]

H. Kanber, R. J. Cipolli, W. B. Henderson, and J. M. Whelan, “A comparison of rapid thermal annealing and controlled atmosphere annealing of Si-implanted GaAs,” J. Appl. Phys. 57(10), 4732–4737 (1985).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Shen, C.-X. Shan, Q. Qiao, J.-S. Liu, B.-H. Li, and D.-Z. Shen, “Stable surface plasmon enhanced ZnO homojunction light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 234–237 (2013).
[Crossref]

J. Phys. Chem. B (1)

S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B 109(7), 2526–2531 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, and S. J. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts,” J. Phys. Chem. C 111(35), 13013–13015 (2007).
[Crossref]

J. Phys. D Appl. Phys. (2)

A. Rajan, G. Kaur, A. Paliwal, H. K. Yadav, V. Gupta, and M. Tomar, “Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors,” J. Phys. D Appl. Phys. 47(42), 425102 (2014).
[Crossref]

S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” J. Phys. D Appl. Phys. 40(22), 6902–6907 (2007).
[Crossref]

Mater. Chem. Phys. (1)

C.-C. Lin and Y.-Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate,” Mater. Chem. Phys. 113(1), 334–337 (2009).
[Crossref]

Mater. Sci. Eng. B (1)

Y. Huang, M. Liu, Z. Li, Y. Zeng, and S. Liu, “Raman spectroscopy of ZnO-based ceramic films fabricated by novel sol-gel process,” Mater. Sci. Eng. B 97(2), 111–116 (2003).
[Crossref]

Mater. Trans. (1)

K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, “Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,” Mater. Trans. 51(7), 1340–1345 (2010).
[Crossref]

Nano Lett. (1)

Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008).
[Crossref] [PubMed]

Nanoscale (1)

G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale 6(3), 1840–1847 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, “Mg composition dependent band offsets of Zn(1-x)Mg(x)O/ZnO heterojunctions,” Phys. Chem. Chem. Phys. 15(27), 11231–11235 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Dvorak, S.-H. Wei, and Z. Wu, “Origin of the variation of exciton binding energy in semiconductors,” Phys. Rev. Lett. 110(1), 016402 (2013).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sens. Actuators A Phys. 207, 61–66 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells 102, 137–141 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of the n-ZnO:Sn film fabrication process. Annealing configuration: FTF without an additional thin film (sample 1) and with additional thin film (sample 2). In the schematic diagram of sample 2, mica was inserted between the two films (sample 3).
Fig. 2
Fig. 2 TGA and DTA curves for the ZnO (black and blue) and n-ZnO:Sn precursors (red and green) shown as the percentage of weight loss and the difference in temperature, respectively.
Fig. 3
Fig. 3 (a) SEM images of three samples. (b) Schematics of the n-ZnO:Sn film regrowth mechanism for sample 3. (c) SEM images of n-ZnO:Sn films using tin acetate precursor as dopant, which is annealed in open air and by VC-FTFA method at 500 °C.
Fig. 4
Fig. 4 Raman spectra of samples 1, 2, and 3 between 80 and 800 cm−1.
Fig. 5
Fig. 5 (a) Optical images of the three samples. (b) Degree of uniformity in the NBE emission intensities: PL spectra were measured at the red points in Fig. 5(a).
Fig. 6
Fig. 6 (a) PL spectra of n-ZnO:Sn films in the center of samples 1 (black), 2 (red), and 3 (blue); the inset shows the PL spectrum of sample 1. (b) PL spectra of n-ZnO:Sn films preparing using an tin acetate as dopant and annealed at 500 °C in open air (black) or by VC-FTFA (red). (c) PL spectra of Mg-doped ZnO films annealed by VC-FTFA method as different concentration.
Fig. 7
Fig. 7 (a) Absorbance spectra of three samples. (b) Confocal PL images of n-ZnO:Sn annealed using the VC-FTFA method at different temperatures.
Fig. 8
Fig. 8 Time-resolved photocurrent spectra at 5 V bias in response to the on/off switch of UV illumination (λ = 365 nm) for the three samples.
Fig. 9
Fig. 9 I-V curves of the n-ZnO:Sn/p-Si heterojunction; the inset is a schematic diagram of this device structure. The n-ZnO:Sn was annealed in open air (black) and using the VC-FTFA method (red) at 500 °C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Zn ( CH 3 COO ) 2 + 2H 2 O Zn ( OH ) 2 + 2CH 3 COOH ( )
SnCl 4 + 4H 2 O Sn ( OH ) 4 + 4HCl ( )
Zn ( OH ) 2 + Sn ( OH ) 4 + 6HCl ZnCl 2 ( ) + SnCl 2 ( ) + 6H 2 O ( )
Zn ( CH 3 COO ) 2 · 2H 2 O Zn ( CH 3 COO ) 2 + 2H 2 O ( )
4Zn ( CH 3 COO ) 2 + 2H 2 O Zn 4 O ( CH 3 COO ) 6 + 2CH 3 COO ( )
Zn 4 O ( CH 3 COO ) 6 + 3H 2 O 4ZnO + 6CH 3 COOH ( )
Zn 4 O ( CH 3 COO ) 6 4ZnO + 3CH 3 COCH 3 ( ) + 3CO 2 ( )

Metrics