Abstract

Two types of cholesteric liquid crystal (CLC) fingerprint structures, namely developable-modulation (DM) and growing-modulation (GM), can be contemporaneously prepared in polymer stabilized CLC (PSCLC) composites, to be mutually perpendicular in a repeatable and reversible voltage-switching process when the cell thickness to pitch length ratios (d/P) were appropriately chosen. PSCLC grating structures with interlaced DM/GM fingerprint textures were achieved by varying the applied voltage and sequentially photopolymerizing the dissolved mesogenic monomers through photomasks with stripe and checker patterns. The morphologies of the distinct interlaced PSCLC structures via different UV exposure sequences were investigated under crossed polarizing optical microscopy (POM) and scanning electron microscopy (SEM). The optimized results suggest that DM gratings should be stabilized before GM gratings. Diffraction measurements reveal polarization-dependent properties of the interlaced DM/GM gratings. The intensity redistribution of diffraction orders in orthogonal direction can be achieved by changing the polarization state of incident laser beam.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures

Yuan Shen, Yan-Chao Xu, Ya-Hao Ge, Rong-guo Jiang, Xiao-Zhong Wang, Sen-Sen Li, and Lu-Jian Chen
Opt. Express 26(2) 1422-1432 (2018)

Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer

Jongyoon Kim, Hyungmin Kim, Seongil Kim, Suseok Choi, Wonbong Jang, Jinwuk Kim, and Ji-Hoon Lee
Appl. Opt. 56(20) 5731-5735 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  2. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  3. A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
    [Crossref] [PubMed]
  4. C. Y. Huang, K. Y. Fu, K. Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [Crossref] [PubMed]
  5. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [Crossref]
  6. O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
    [Crossref]
  7. A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
    [Crossref]
  8. H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
    [Crossref]
  9. H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
    [Crossref] [PubMed]
  10. K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
    [Crossref]
  11. D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
    [Crossref]
  12. J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
    [Crossref]
  13. D. Voloschenko and O. D. Lavrentovich, “Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix,” J. Appl. Phys. 86(9), 4843–4846 (1999).
    [Crossref]
  14. T. Ishikawa and O. D. Lavrentovich, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Kluwer Academic Publishers, 2001), pp. 271–301.
  15. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [Crossref]
  16. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [Crossref]
  17. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
    [Crossref] [PubMed]
  18. A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction grating in cholesteric polymer with phototunable helix pitch,” Adv. Optical Mater. (posted 14 July 2015, in press).
    [Crossref]
  19. I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
    [Crossref]
  20. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [Crossref]
  21. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  22. A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Optical Mater. DOI: (posted 6 May 2015, in press).
    [Crossref]
  23. C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
    [Crossref] [PubMed]
  24. L. L. Ma, S. S. Li, W. S. Li, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Optical Mater. (posted 7 September 2015, in press).
  25. S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
    [Crossref]
  26. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [Crossref]
  27. S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
    [Crossref]
  28. H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
    [Crossref]
  29. S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
    [Crossref]
  30. A datasheet provided by Yantai Xianhua Chem-Tech Co, LTD, China.
  31. I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
    [Crossref] [PubMed]
  32. J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
    [Crossref]
  33. V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
    [Crossref]
  34. V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
    [Crossref] [PubMed]
  35. A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 031704 (2005).
    [Crossref] [PubMed]
  36. I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
    [Crossref]
  37. G. McKay, “Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal,” Eur Phys J E Soft Matter 35(8), 74–83 (2012).
    [Crossref] [PubMed]

2015 (1)

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

2014 (1)

I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
[Crossref]

2012 (5)

G. McKay, “Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal,” Eur Phys J E Soft Matter 35(8), 74–83 (2012).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

2011 (2)

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
[Crossref]

2010 (2)

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

2006 (2)

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[Crossref]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

2005 (2)

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 031704 (2005).
[Crossref] [PubMed]

2004 (2)

V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
[Crossref]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (3)

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
[Crossref]

2001 (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

2000 (1)

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

1999 (2)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

D. Voloschenko and O. D. Lavrentovich, “Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix,” J. Appl. Phys. 86(9), 4843–4846 (1999).
[Crossref]

1998 (3)

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[Crossref]

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

1997 (2)

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
[Crossref]

Bisoyi, H. K.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Bos, P.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Bunning, T. J.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Chen, C. W.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chen, F. C.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

Chen, S. H.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

Chen, T. J.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Chen, Y. Y.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chiang, R. H.

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[Crossref]

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Dickert, F. L.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

Fan, B.

Fu, K. Y.

Fuh, A. Y.-G.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[Crossref]

Fung, R. X.

Gandhi, J. V.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Genack, A. Z.

Gvozdovskyy, I.

I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
[Crossref]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
[Crossref]

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Huang, C. Y.

Huang, S. Y.

Jau, H. C.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

Jeong, H. S.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Jung, H. T.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

Kats, E. I.

V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
[Crossref]

Kim, J. H.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kim, Y. H.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kiselev, A. D.

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 031704 (2005).
[Crossref] [PubMed]

Kopp, V. I.

Kuo, C. T.

Kurihara, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Lai, Y. C.

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

Lavrentovich, O. D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

D. Voloschenko and O. D. Lavrentovich, “Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix,” J. Appl. Phys. 86(9), 4843–4846 (1999).
[Crossref]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Lee, J. S.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Lee, K. L.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Lee, S. N.

S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[Crossref]

Li, C. C.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Li, Q.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Li, T. H.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Li, Y. N.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Lieberzeit, P. A.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

Lin, C. H.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[Crossref]

Lin, T. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

Liu, J. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

Liu, S. H.

Lo, K. Y.

McKay, G.

G. McKay, “Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal,” Eur Phys J E Soft Matter 35(8), 74–83 (2012).
[Crossref] [PubMed]

Mi, X. D.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Mitov, M.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Mujahid, A.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Nonaka, T.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Osipov, M. A.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

Palto, S. P.

V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
[Crossref]

Serbina, M.

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
[Crossref]

Shiyanovskii, S. V.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

Sluckin, T. J.

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 031704 (2005).
[Crossref] [PubMed]

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[Crossref]

Srinivasarao, M.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Stathopulos, H.

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

Stewart, I. W.

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

Subacius, D.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Tsai, M. S.

Vithana, H. K. M.

Voloschenko, D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

D. Voloschenko and O. D. Lavrentovich, “Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix,” J. Appl. Phys. 86(9), 4843–4846 (1999).
[Crossref]

Wang, C. T.

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Wu, J. J.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

Wu, Y. S.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

Yamaguchi, R.

Yang, D. K.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Yao, I. A.

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

Yaroshchuk, O.

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
[Crossref]

Adv. Mater. (1)

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

H. C. Jau, Y. N. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Li, T. J. Bunning, and Q. Li, “Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Optical Mater. 3(2), 166–170 (2015).
[Crossref]

Appl. Phys. Lett. (6)

S. N. Lee, L. C. Chien, and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chem. Mater. (2)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings-effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[Crossref]

Eur Phys J E Soft Matter (1)

G. McKay, “Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal,” Eur Phys J E Soft Matter 35(8), 74–83 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Voloschenko and O. D. Lavrentovich, “Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix,” J. Appl. Phys. 86(9), 4843–4846 (1999).
[Crossref]

J. Chem. Phys. (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

Jpn. J. Appl. Phys. (3)

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase gratings in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(2), L1318–L1320 (2002).
[Crossref]

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[Crossref]

Liq. Cryst. (1)

I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
[Crossref]

Macromolecules (1)

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced localization of orientationally ordered networks at the surface of a liquid crystal host,” Macromolecules 35(25), 9372–9376 (2002).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 546, 202–208 (2011).
[Crossref]

V. A. Belyakov, E. I. Kats, and S. P. Palto, “Temperature and field hysteresis of the pitch variations in thin planar layers of cholesterics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 410(1), 229–238 (2004).
[Crossref]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref] [PubMed]

A. D. Kiselev and T. J. Sluckin, “Twist of cholesteric liquid crystal cells: Stability of helical structures and anchoring energy effects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 031704 (2005).
[Crossref] [PubMed]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 051705 (2004).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Proc. SPIE (1)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Sensors (Basel) (1)

A. Mujahid, H. Stathopulos, P. A. Lieberzeit, and F. L. Dickert, “Solvent vapour detection with cholesteric liquid crystals--optical and mass-sensitive evaluation of the sensor mechanism,” Sensors (Basel) 10(5), 4887–4897 (2010).
[Crossref] [PubMed]

Other (5)

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction grating in cholesteric polymer with phototunable helix pitch,” Adv. Optical Mater. (posted 14 July 2015, in press).
[Crossref]

T. Ishikawa and O. D. Lavrentovich, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Kluwer Academic Publishers, 2001), pp. 271–301.

A datasheet provided by Yantai Xianhua Chem-Tech Co, LTD, China.

L. L. Ma, S. S. Li, W. S. Li, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Optical Mater. (posted 7 September 2015, in press).

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Optical Mater. DOI: (posted 6 May 2015, in press).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Electrically switching textures of CLC mixture observed under a POM; the corresponding steps of three experimental methods illustrated. White arrows denote the polarizer and analyzer transmission axes respectively. Double-headed arrow denotes the rubbing direction.
Fig. 2
Fig. 2 POM images of stripe-patterned and checker-patterned structures based on PSCLC gratings fabricated by via (a) Sequence 1, (b) Sequence 2, and (c-f) Sequence 3. White arrows denote the polarizer and analyzer transmission axes respectively. Double-headed arrow denotes the rubbing direction.
Fig. 3
Fig. 3 SEM image of the stripe-patterned PSCLC gratings corresponding to Fig. 2(c). Double-headed arrow denotes the rubbing direction.
Fig. 4
Fig. 4 Diffraction patterns of PSCLC gratings from stripe-patterned gratings shown in Fig. 2(c) and 2(d). The double-headed arrow represents the polarization state of the probe beam, which is perpendicular (a, c) and parallel (b, d) to GM grating vector. The insets plot the minor diffraction patterns in 0th order major diffraction spot. The distance from sample to the viewing screen is 25 cm. The distances between 0th order and ± 1/2, ± 1st orders of GM gratings are 4.1 cm and 8.7 cm, respectively; the distances between 0th order and ± 1/2, ± 1st orders of DM gratings are 3.6 cm and 7.4 cm, respectively.
Fig. 5
Fig. 5 The diffraction properties of stripe-patterned PSCLC gratings shown in Fig. 2(d). (a) The dependence of diffraction efficiency of 1/2 and 1st orders of GM and DM gratings on polarized angle. The polarized angle is defined to be relative to the GM grating vector. The inset plots the intensity ratios of 1st order diffraction intensities contributed by GM and DM gratings. (b) The dependence of 0th order diffraction efficiency on polarized angle. (c) The dependence of diffraction efficiency of 1st order of GM and DM gratings on applied voltage. The inset shows the dependence of diffraction efficiency of 1/2 order of GM and DM gratings on applied voltage. (d) The dependence of 0th order and sum of 0th, ± 1/2 and ± 1st orders of GM and DM gratings diffraction efficiency on applied voltage.

Metrics