P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).

[Crossref]
[PubMed]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

Y. Chen and T. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Optical Materials Express 3, 346–356 (2013).

[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Materials Res. 36, 467–495 (2006).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

L. Cummings and P. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” Journal of Fluid Mechanics 389, 361–389 (1999).

[Crossref]

P. Gospodinov and A. L. Yarin, “Draw resonance of optical microcapillaries in non-isothermal drawing,” Intl J. Multiphase Flow 23, 967–976 (1997).

[Crossref]

A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys Fluids 6, 1454–1463 (1994).

[Crossref]

Y. Chen and T. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Optical Materials Express 3, 346–356 (2013).

[Crossref]

P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).

[Crossref]
[PubMed]

Y. Chen and T. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Optical Materials Express 3, 346–356 (2013).

[Crossref]

P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

L. Cummings and P. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” Journal of Fluid Mechanics 389, 361–389 (1999).

[Crossref]

P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Materials Res. 36, 467–495 (2006).

[Crossref]

H. Tronnolone, Y. M. Stokes, H. T. C. Foo, and H. Ebendorff-Heidepriem, “Gravitational extension of a fluid cylinder with internal structure,” J. Fluid Mech. submitted (2015).

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing,” J. Lightwave Technol. 27, 871–878 (2009).

[Crossref]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation,” J. Lightwave Technol. 26, 791–798 (2008).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the Fabrication of Hollow Fibers: Capillary Drawing,” J. Lightwave Technol. 19, 1924–1931 (2001).

[Crossref]

H. Tronnolone, Y. M. Stokes, H. T. C. Foo, and H. Ebendorff-Heidepriem, “Gravitational extension of a fluid cylinder with internal structure,” J. Fluid Mech. submitted (2015).

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the Fabrication of Hollow Fibers: Capillary Drawing,” J. Lightwave Technol. 19, 1924–1931 (2001).

[Crossref]

P. Gospodinov and A. L. Yarin, “Draw resonance of optical microcapillaries in non-isothermal drawing,” Intl J. Multiphase Flow 23, 967–976 (1997).

[Crossref]

A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys Fluids 6, 1454–1463 (1994).

[Crossref]

L. Cummings and P. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” Journal of Fluid Mechanics 389, 361–389 (1999).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing,” J. Lightwave Technol. 27, 871–878 (2009).

[Crossref]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation,” J. Lightwave Technol. 26, 791–798 (2008).

[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Materials Res. 36, 467–495 (2006).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the Fabrication of Hollow Fibers: Capillary Drawing,” J. Lightwave Technol. 19, 1924–1931 (2001).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the Fabrication of Hollow Fibers: Capillary Drawing,” J. Lightwave Technol. 19, 1924–1931 (2001).

[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).

[Crossref]
[PubMed]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys Fluids 6, 1454–1463 (1994).

[Crossref]

P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

H. Tronnolone, Y. M. Stokes, H. T. C. Foo, and H. Ebendorff-Heidepriem, “Gravitational extension of a fluid cylinder with internal structure,” J. Fluid Mech. submitted (2015).

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

H. Tronnolone, Y. M. Stokes, H. T. C. Foo, and H. Ebendorff-Heidepriem, “Gravitational extension of a fluid cylinder with internal structure,” J. Fluid Mech. submitted (2015).

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing,” J. Lightwave Technol. 27, 871–878 (2009).

[Crossref]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation,” J. Lightwave Technol. 26, 791–798 (2008).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

P. Gospodinov and A. L. Yarin, “Draw resonance of optical microcapillaries in non-isothermal drawing,” Intl J. Multiphase Flow 23, 967–976 (1997).

[Crossref]

A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys Fluids 6, 1454–1463 (1994).

[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. Materials Res. 36, 467–495 (2006).

[Crossref]

P. Gospodinov and A. L. Yarin, “Draw resonance of optical microcapillaries in non-isothermal drawing,” Intl J. Multiphase Flow 23, 967–976 (1997).

[Crossref]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. 97, 1572—1581 (2014).

[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).

[Crossref]

P. Buchak, D. G. Crowdy, Y. M. Stokes, and H. Ebendorff-Heidepriem, “Elliptical pore regularization of the inverse problem for microstructure optical fibre fabrication,” J. Fluid Mech. 778, 5–38 (2015).

[Crossref]

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Microstructured optical fibre drawing with active channel pressurisation,” J. Fluid Mech. 783, 137–165 (2015).

[Crossref]

S. Xue, R. Tanner, G. Barton, R. Lwin, M. Large, and L. Poladian, “Fabrication of Microstructured Optical Fibres Part I: Problem Formulation and Numerical Modelling of Transient Draw Process,” J. Lightwave Technol. 23, 2245–2254 (2005).

[Crossref]

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Numerical Solution and Experimental Validation of the Drawing Process of Six-Hole Optical Fibers Including the Effects of Inner Pressure and Surface Tension,” J. Lightwave Technol. 30, 1306–1311 (2012).

[Crossref]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical Modeling as an Accurate Predictive Tool in Capillary and Microstructured Fiber Manufacture: The Effects of Preform Rotation,” J. Lightwave Technol. 26, 791–798 (2008).

[Crossref]

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing,” J. Lightwave Technol. 27, 871–878 (2009).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the Fabrication of Hollow Fibers: Capillary Drawing,” J. Lightwave Technol. 19, 1924–1931 (2001).

[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” Journal of Engineering Mathematics 43, 201–227 (2002).

[Crossref]

L. Cummings and P. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” Journal of Fluid Mechanics 389, 361–389 (1999).

[Crossref]

Y. Chen and T. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Optical Materials Express 3, 346–356 (2013).

[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Optical Materials Express 4, 29–40 (2014).

[Crossref]

A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys Fluids 6, 1454–1463 (1994).

[Crossref]

H. Tronnolone, Y. M. Stokes, H. T. C. Foo, and H. Ebendorff-Heidepriem, “Gravitational extension of a fluid cylinder with internal structure,” J. Fluid Mech. submitted (2015).

Schott Glass Company, Optical Glass (2014).