Abstract

In this paper, a novel approach to fabricate a hybrid solid state system with both tunable nonlinearity and self-repairing property is studied. The optical nonlinear properties of a silicon nanoparticles system based on gel wax matrix were experimentally investigated. Tunable optical nonlinearities from optical limiting to saturable absorption were achieved by simply changing the concentration of nanoparticles inside the matrix. This approach opens a route for a low cost, one-step-synthesis nonlinear system being highly compatible with silicon optoelectronic circuits. This hybrid system also demonstrates the self-repairing property after excess exposure to laser irradiation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles

Mengmeng Yue, Jinhai Si, Lihe Yan, Yang Yu, and Xun Hou
Opt. Mater. Express 8(3) 698-703 (2018)

Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda
Opt. Mater. Express 1(5) 980-989 (2011)

Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters

Olivier Muller, Stefanie Dengler, Gunnar Ritt, and Bernd Eberle
Appl. Opt. 52(2) 139-149 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2003).
  2. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  3. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009).
    [Crossref]
  4. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  5. E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
    [Crossref]
  6. X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
    [Crossref]
  7. S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chem. Mater. 18(17), 4083–4088 (2006).
    [Crossref]
  8. F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
    [Crossref] [PubMed]
  9. W. R. Camp, W. J. Schutz, and J. L. Vollenweider, “Scented candle gel,” U.S. Patent 5 964 905, (1999).
  10. H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
    [Crossref] [PubMed]
  11. S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).
  12. X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
    [Crossref] [PubMed]
  13. X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
    [Crossref] [PubMed]
  14. H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
    [Crossref] [PubMed]
  15. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
    [Crossref]
  16. L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
    [Crossref]
  17. G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
    [Crossref]
  18. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
    [Crossref]
  19. X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref]
  20. E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Materials, C. Dirk, ed. (CRC Press, 1998).
  21. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
    [Crossref]
  22. E. O. Göbel, “Ultrafast spectroscopy of semiconductors,” Festkor-Adv. Solid. St. 30, 269–294 (1990).
  23. D. B. M. Klaassen, “A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime,” Solid-State Electron. 35(7), 961–967 (1992).
    [Crossref]

2014 (2)

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

2013 (1)

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

2012 (2)

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

2011 (1)

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

2010 (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

2009 (1)

2008 (2)

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

2007 (2)

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

2006 (1)

S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chem. Mater. 18(17), 4083–4088 (2006).
[Crossref]

2004 (1)

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

2003 (1)

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

1994 (1)

1993 (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

1992 (1)

D. B. M. Klaassen, “A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime,” Solid-State Electron. 35(7), 961–967 (1992).
[Crossref]

1990 (1)

E. O. Göbel, “Ultrafast spectroscopy of semiconductors,” Festkor-Adv. Solid. St. 30, 269–294 (1990).

Agrawal, G. P.

Aouani, H.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Aziz, S. B.

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Chen, G. X.

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Chen, L. W.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Chen, X.

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009).
[Crossref]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Couris, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Dadap, J. I.

Dulkeith, E.

Elim, H. I.

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Erogbogbo, F.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Feng, L. J.

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Fu, Y.

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

Göbel, E. O.

E. O. Göbel, “Ultrafast spectroscopy of semiconductors,” Festkor-Adv. Solid. St. 30, 269–294 (1990).

Gong, Q.

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

Green, W. M. J.

Gu, M.

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

Guo, Z. M.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Hagan, D. J.

He, Y.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

Ho, G. W.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Hong, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Hong, M. H.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Hsieh, I. W.

Hu, X.

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

Huang, H. Q.

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

Huang, L.

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

Hussein, A. M.

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

Hussein, S.

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

Ji, W.

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Jia, B.

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

Jiang, X. F.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Kao, T. S.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Klaassen, D. B. M.

D. B. M. Klaassen, “A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime,” Solid-State Electron. 35(7), 961–967 (1992).
[Crossref]

Kokkinaki, O.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Konstantaki, M.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Kornilios, N.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Korovin, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Koudoumas, E.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, X.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

Lin, Q.

Liu, X.

Ma, G. H.

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

Maier, S. A.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Navarro-Cia, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Neo, S. T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Ogluzdin, V. E.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Osgood, R. M.

Oulton, R. F.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Painter, O. J.

Panoiu, N. C.

Polavarapu, L.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Prasad, P. N.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Pustovoi, V.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Rahmani, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Roy, I.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Saeed, S. R.

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

Said, A. A.

Sato, S.

S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chem. Mater. 18(17), 4083–4088 (2006).
[Crossref]

Sheik-Bahae, M.

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Sidiropoulos, T. P. H.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Swihart, M. T.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chem. Mater. 18(17), 4083–4088 (2006).
[Crossref]

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

Talukdar, S. S.

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Van Stryland, E. W.

Venkatesan, T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Vlasov, Y. A.

Wang, J.

Xu, G.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Xu, Q. H.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Xu, Q.-H.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Yang, H.

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

Yong, K.-T.

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Zhang, Y.

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

Zheng, X.

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

Zhu, H.

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

Zhuo, H. Q.

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

ACS Nano (1)

F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Adv. Mater. (2)

X. Hu, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater. 23(37), 4295–4300 (2011).
[Crossref] [PubMed]

X. Zheng, B. Jia, X. Chen, and M. Gu, “In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices,” Adv. Mater. 26(17), 2699–2703 (2014).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Anal. Biochem. (1)

H. Q. Zhuo, L. Huang, L. J. Feng, and H. Q. Huang, “Mineral oil-, glycerol-, and Vaseline-coated plates as matrix-assisted laser desorption/ionization sample supports for high-throughput peptide analysis,” Anal. Biochem. 378(2), 151–157 (2008).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chem. Mater. 18(17), 4083–4088 (2006).
[Crossref]

Festkor-Adv. Solid. St. (1)

E. O. Göbel, “Ultrafast spectroscopy of semiconductors,” Festkor-Adv. Solid. St. 30, 269–294 (1990).

Int. J. Met. (1)

S. B. Aziz, S. Hussein, A. M. Hussein, and S. R. Saeed, “Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder,” Int. J. Met. 2013, 123657 (2013).

J. Appl. Phys. (1)

G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji, “Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water,” J. Appl. Phys. 95(3), 1455–1459 (2004).
[Crossref]

J. Nanomater. (1)

L. W. Chen, X. F. Jiang, Z. M. Guo, H. Zhu, T. S. Kao, Q. H. Xu, G. W. Ho, and M. H. Hong, “Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration,” J. Nanomater. 2014, 652829 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Langmuir (1)

X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, “Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum,” Langmuir 19(20), 8490–8496 (2003).
[Crossref]

Laser. Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nano-processing,” Laser. Photon. Rev. 4(1), 123–143 (2010).
[Crossref]

Nano Lett. (1)

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, “Nonlinear optical response of silicon nanocrystals,” Opt. Mater. 30(2), 260–263 (2007).
[Crossref]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Solid-State Electron. (1)

D. B. M. Klaassen, “A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime,” Solid-State Electron. 35(7), 961–967 (1992).
[Crossref]

Other (3)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2003).

W. R. Camp, W. J. Schutz, and J. L. Vollenweider, “Scented candle gel,” U.S. Patent 5 964 905, (1999).

E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Materials, C. Dirk, ed. (CRC Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of synthesized Si nanoparticles ((SiNPs of 6 mM concentration), Scale bar = 1 µm. (b) Size distribution of synthesized SiNPs, calculated from a randomly selected sample of nanoparticles.
Fig. 2
Fig. 2 Calculated normalized transmittance from Z-scan measurement results, for samples at 20mM, 30 mM and 60 mM of SiNPs respectively, and for a pure gel wax sample.
Fig. 3
Fig. 3 Schematic diagram for the nonlinear scattering (NS) mechanism. (a) At a low fluence, no significant influence on output light; (b) at a high fluence, melting of matrix generates localized micro-bubbles around each nanoparticle, incident light is nonlinearly scattered and output fluence is reduced.
Fig. 4
Fig. 4 Normalized transmittance of (A) the synthesized sample at the concentration of 30 mM; (B) after the sample was exposed to incident laser for 4 more minutes; (C) after closing the aperture to prevent the sample from exposure to the laser irradiation for 30 s, then re-opened the aperture and conducted Z-scan Test C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T m ( Z ) = T ( Z ) / T ( Z Z 0 )

Metrics