Abstract

Silicon solar cell technology is dominating in the photovoltaic industry, however, a further increase in cost-effectiveness is needed. This can be achieved by increasing the light coupling in the active layer of the cell. Passivation layer of the commercial polycrystalline silicon solar cells was textured using the laser beam interference patterning technique to obtain enhanced optical properties due to the formation of periodic refractive index grating. As a consequence of laser irradiation, passivation layer of silicon nitride was partially oxidized at the intensity peaks of the interference distribution. Periodic distribution of oxidized areas was found by EDS. Investigation of optical and electrical properties of the laser treated solar cells shows increased light coupling and better photo-electrical performance. Simulations were carried out to evaluate the influence of refractive index grating formed in silicon oxy-nitride to optical properties of the patterned solar cells. Periodic oxide grating was found to be more efficient for light coupling in thinner film structures. The results of this work may find applications in other fields as it allows alteration of material composition in the well-defined periodic pattern.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation

Xinyu Tan, Wensheng Yan, Yiteng Tu, and Can Deng
Opt. Express 25(13) 14725-14731 (2017)

Using autocloning effects to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells

Y. C. Lee, S. C. Tseng, H. L Chen, C. C. Yu, W. L. Cheng, C. H. Du, and C. H. Lin
Opt. Express 18(S3) A421-A431 (2010)

Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement

Hamid Heidarzadeh, Ali Rostami, Samiye Matloub, Mahboubeh Dolatyari, and Ghassem Rostami
Appl. Opt. 54(12) 3591-3601 (2015)

References

  • View by:
  • |
  • |
  • |

  1. EPIA, “Global Market Outlook for Photovoltaics 2013–2017,” Global Market Outlook for Photovoltaics 2013–2017 (2013).
  2. “GTM Research. 2013. PV technology and cost outlook, 2013–2017. Boston.”
  3. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
    [Crossref]
  4. Y. J. Hung, S. L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
    [Crossref] [PubMed]
  5. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  6. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  7. G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
    [Crossref]
  8. G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
    [Crossref] [PubMed]
  9. N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
    [Crossref]
  10. V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
    [Crossref] [PubMed]
  11. H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
    [Crossref]
  12. S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
    [Crossref]
  13. I. Fränz and W. Langheinrich, “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electron. 14(6), 499–505 (1971).
    [Crossref]
  14. D. W. Bäuerle, Laser Processing and Chemistry (Springer, 2011).
  15. W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
    [Crossref]
  16. C. S. K. Neckermann, G. Andrä, M. Bähr, J. Lossen, and E. Ose, “Local structuring of dielectric layers on silicon for improved solar cell metallization,” in 22th European photovoltaic solar energy conference, 2007)
  17. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).
  18. P. Kubelka, “New Contributions to the Optics of Intensely Light-Scattering Materials,” J. Opt. Soc. Am. 38(5), 448–457 (1948).
    [Crossref] [PubMed]
  19. L. Yang and B. Kruse, “Revised Kubelka-Munk theory. I. Theory and application,” J. Opt. Soc. Am. A 21(10), 1933–1941 (2004).
    [Crossref] [PubMed]
  20. L. Yang, B. Kruse, and S. J. Miklavcic, “Revised Kubelka-Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media,” J. Opt. Soc. Am. A 21(10), 1942–1952 (2004).
    [Crossref] [PubMed]
  21. L. Yang and S. J. Miklavcic, “Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media,” J. Opt. Soc. Am. A 22(9), 1866–1873 (2005).
    [Crossref] [PubMed]
  22. K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE, 2012), 000265–000271.
    [Crossref]
  23. P. Kwiecien, “rcwa-1d”, SourceForge, 2014, http://sourceforge.net/projects/rcwa-1d/ .
  24. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  25. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [Crossref] [PubMed]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  27. E. Hecht, Optics (Addison-Wesley Longman, Inc., San Francisco, 2002).
  28. S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

2015 (1)

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

2014 (1)

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

2013 (1)

2011 (1)

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

2010 (3)

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Y. J. Hung, S. L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

2005 (1)

2004 (2)

2000 (1)

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

1998 (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

1995 (1)

1989 (1)

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

1982 (1)

1976 (1)

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

1971 (1)

I. Fränz and W. Langheinrich, “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electron. 14(6), 499–505 (1971).
[Crossref]

1948 (1)

1931 (1)

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Aboaf, J. A.

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

Artinyan, R.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

Auzelyte, V.

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Bååk, T.

Bläsi, B.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Callard, S.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Chen, J.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Coldren, L. A.

Deschamps, T.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

Drouard, E.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Du, H.

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

Flitsch, R.

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

Fränz, I.

I. Fränz and W. Langheinrich, “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electron. 14(6), 499–505 (1971).
[Crossref]

Gaylord, T. K.

Glunz, S. W.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Gomard, G.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Gombert, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Grann, E. B.

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Hung, Y. J.

Indrišiunas, S.

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

Kruse, B.

Kubelka, P.

P. Kubelka, “New Contributions to the Optics of Intensely Light-Scattering Materials,” J. Opt. Soc. Am. 38(5), 448–457 (1948).
[Crossref] [PubMed]

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Langheinrich, W.

I. Fränz and W. Langheinrich, “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electron. 14(6), 499–505 (1971).
[Crossref]

Lee, S. L.

Li, P.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Ludwig, A.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Mäckel, H.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Meng, X.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Miklavcic, S. J.

Moharam, M. G.

Munk, F.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Pantano, C. G.

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

Peretti, R.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Pfleging, W.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Pliskin, W. A.

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

Pommet, D. A.

Preu, R.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Raciukaitis, G.

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

Raider, S. I.

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

Roca i Cabarrocas, P.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Schmitt, B.

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Seassal, C.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Seemann, K.

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

Sigg, H.

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Solak, H. H.

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Spear, K. E.

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

Tressler, R. E.

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Voisiat, B.

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

Wang, N.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Wei, W.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Wen, Y.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Wittwer, V.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Yang, L.

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Zhu, Y.

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Žukauskas, A.

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. Roca i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104(5), 051119 (2014).
[Crossref]

Appl. Surf. Sci. (1)

W. Pfleging, A. Ludwig, K. Seemann, R. Preu, H. Mäckel, and S. W. Glunz, “Laser micromachining for applications in thin film technology,” Appl. Surf. Sci. 154–155, 633–639 (2000).
[Crossref]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Electrochem. Soc. (2)

H. Du, R. E. Tressler, K. E. Spear, and C. G. Pantano, “Oxidation Studies of Crystalline CVD Silicon Nitride,” J. Electrochem. Soc. 136(5), 1527–1536 (1989).
[Crossref]

S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, “Surface Oxidation of Silicon Nitride Films,” J. Electrochem. Soc. 123(4), 560–565 (1976).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Nano Lett. (1)

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

V. Auzelyte, H. Sigg, B. Schmitt, and H. H. Solak, “Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure,” Nanotechnology 21(21), 215302 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, and Y. Wen, “Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer,” Opt. Commun. 284(19), 4773–4777 (2011).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

S. Indrišiūnas, B. Voisiat, A. Žukauskas, and G. Račiukaitis, “Direct laser beam patterning technique for fast high aspect ratio surface structuring,” Proc. SPIE 9350, 935003 (2015).

Sol. Energy Mater. Sol. Cells (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[Crossref]

Solid-State Electron. (1)

I. Fränz and W. Langheinrich, “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electron. 14(6), 499–505 (1971).
[Crossref]

Z. Tech. Phys. (1)

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Other (8)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

E. Hecht, Optics (Addison-Wesley Longman, Inc., San Francisco, 2002).

K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE, 2012), 000265–000271.
[Crossref]

P. Kwiecien, “rcwa-1d”, SourceForge, 2014, http://sourceforge.net/projects/rcwa-1d/ .

D. W. Bäuerle, Laser Processing and Chemistry (Springer, 2011).

C. S. K. Neckermann, G. Andrä, M. Bähr, J. Lossen, and E. Ose, “Local structuring of dielectric layers on silicon for improved solar cell metallization,” in 22th European photovoltaic solar energy conference, 2007)

EPIA, “Global Market Outlook for Photovoltaics 2013–2017,” Global Market Outlook for Photovoltaics 2013–2017 (2013).

“GTM Research. 2013. PV technology and cost outlook, 2013–2017. Boston.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 SEM images of laser-treated poly-silicon solar cell samples (top to bottom: peak fluence 1.5 J/cm2 4 pulses; 0.65 J/cm2 1 pulse; 0.14 J/cm2 1 pulse).
Fig. 2
Fig. 2 EDS element maps of untreated (a) and laser irradiated (peak fluence 0.14 J/cm2, 1 pulse) (b) polycrystalline silicon solar cell samples. C denotes carbon EDS maps, N – Nitrogen, O – Oxygen maps. In the bottom of (b), EDS oxygen map of laser treated sample is compared to the intensity distribution of four interfering beams.
Fig. 3
Fig. 3 Dependence of ratio of atomic percentages of silicon to oxygen (a) and silicon to nitrogen (b) on the peak laser fluence. Calculated from XPS measurements of Si2p, O1s and N1s peaks. The red line marks O/Si and N/Si ratios in the untreated sample. All samples were patterned using one laser pulse.
Fig. 4
Fig. 4 Dependence of the reflection coefficient Rd (a), absorbtance A (b) and absorption coefficient K (in arbitrary units) (c) on the wavelength λ. Laser treated (1 – 5) and untreated (6) samples are compared. Comparison of absorption coefficients K of the laser treated and untreated (100%) samples in the 300 – 1000 nm spectral range (d). Laser irradiation fluence: 1 – 0.08 J/cm2; 2 – 0.14 J/cm2; 3 – 0.28 J/cm2; 4 – 0.57 J/cm2; 5 – 0.84 J/cm2; 6 – no laser treatment. All samples were patterned with one laser pulse.
Fig. 5
Fig. 5 Reflectivity of random silicon pyramids with the 75 nm-h thick silicon nitride layer and the h nm thick silicon oxide layer on top. 1 – h = 0 nm, 2 – h = 5 nm, 3 – h = 10 nm, 4 – h = 15 nm (a).
Fig. 6
Fig. 6 Electric field intensities in the uniform Si3N4 layer (left) and the 0.5 μm-period Si3N4 grating with the refractive index difference Δn = 0.5 (right). Irradiation wavelength is 300 nm, angle of incidence 0 deg.
Fig. 7
Fig. 7 Spectral dependence of reflectivity on the grating period Λ. The width of the modified refractive index ne region is Λ/2. R0 is the reflectivity of silicon pyramids with the uniform Si3N4 layer and RΛ is the reflectivity of silicon pyramids with the refractive index grating. Effective refractive index of the oxidized silicon nitride layer is: ne = 0.5 nSi3N4 + 0.5 nSiO2. The red color represents increased reflectivity due to structuring in SiNx layer while green-blue is for the decreased reflectivity.
Fig. 8
Fig. 8 Simulated reflectivity R and absorbtance A of 2 μm-thick silicon substrate with 75 nm-thick silicon nitride layer. 1 – a uniform silicon nitride film, 2 – 1 μm period SiNx/SiO2 grating, 3 –0.5 μm period SiNx/SiO2 grating. TM polarized wave was impinging on the top of the structure at 0 deg angle of incidence.
Fig. 9
Fig. 9 Volt-ampere characteristics of untreated (dashed line) and laser treated (pulse energy 35 μJ, 25 pulses) solar cell samples (a). (b) shows enlarged portion of curves in the vicinity of maximal power point (Vmp and Jmp denote voltage and current density at this point).

Tables (2)

Tables Icon

Table 1 Comparison of light collection from AM1.5 Global spectrum for various period gratings. IPgrating is an integrated power of the AM1.5 spectrum multiplied by the grating absorbtance A. IPuniform is an integrated power of the AM1.5 spectrum multiplied by the absorbtance of the uniform SiNx layer.

Tables Icon

Table 2 Comparison of solar cell parameters before and after the laser treatment (calculated from Fig. 9). VOC is the open-circuit voltage, Jsc is the short-circuit current density, FF is the fill factor Pmax is the maximum generated power point, and η is the PV efficiency coefficient.

Metrics