Abstract

Amorphous TiO2 nanostructured thin films (TNFs) were deposited by the glancing angle deposition technique (GLAD) with an electron gun. All of the prepared TNFs were composed of discrete nanoscale columns, characterized by scanning electron microscope. With the annealing treatment, the pure anatase phase was transformed from amorphous TNFs. The morphological, structural and optical properties of TNFs under the annealing treatment were measured, and the evolvement mechanism was further analyzed. The optimum annealing temperature for the pure anatase precipitation of TNFs is about 400°C. The variation of morphology, chemical state and crystallization of TNFs also resulted in the shift of the transmittance spectra. The results show that appropriate post-annealing treatment can build fine nanostructures and pure anatase precipitation, which can support the applications and researches about the anatase phase TNFs powerfully.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Bin Wang, Hongji Qi, Hu Wang, Yanyan Cui, Jiaoling Zhao, Jialu Guo, Yun Cui, Youchen Liu, Kui Yi, and Jianda Shao, "Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures: publisher’s note," Opt. Mater. Express 5, 2545-2545 (2015)
http://proxy.osapublishing.org/ome/abstract.cfm?uri=ome-5-11-2545

13 October 2015: A correction was made to the author listing.


OSA Recommended Articles
Effects of temperature on columnar microstructure and recrystallization of TiO2 film produced by ion-assisted deposition

Hsi-Chao Chen, Cheng-Chung Lee, Cheng-Chung Jaing, Ming-Hua Shiao, Chih-Jung Lu, and Fuh-Sheng Shieu
Appl. Opt. 45(9) 1979-1984 (2006)

Fabrication of TiO2 thin films with both anatase and rutile structures together using the ion-implantation method

Yu-Jie Ma, Fei Lu, Bing-Xi Xiang, Jin-Lai Zhao, and Shuang-Chen Ruan
Opt. Mater. Express 8(3) 532-540 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
    [Crossref]
  2. W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
    [PubMed]
  3. C. D. Valentin and D. Costa, “Anatase TiO2 surface functionalization by alkylphosphonic acid: ADFT+D study,” J. Phys. Chem. C 116(4), 2819–2828 (2012).
    [Crossref]
  4. Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
    [Crossref] [PubMed]
  5. C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
    [Crossref]
  6. S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
    [Crossref]
  7. T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
    [Crossref]
  8. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
    [Crossref] [PubMed]
  9. T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
    [Crossref]
  10. T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
    [Crossref]
  11. J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
    [Crossref]
  12. N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
    [Crossref]
  13. T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
    [Crossref]
  14. A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
    [Crossref] [PubMed]
  15. B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).
  16. R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
    [Crossref]
  17. Y. Zhao, “Dynamic Shadowing Growth and Its Energy Applications,” Front. Energy Res. 2, 00038 (2014).
    [Crossref]
  18. Y. J. Jen, C. C. Chen, and C. Y. Jheng, “Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index,” Opt. Lett. 39(12), 3386–3389 (2014).
    [Crossref] [PubMed]
  19. U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568 (2014).
  20. C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
    [Crossref]
  21. H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
    [Crossref]
  22. Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
    [Crossref]
  23. X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
    [Crossref]
  24. H. Qi, X. Xiao, H. He, K. Yi, and Z. Fan, “Optical properties and microstructure of Ta2O5 biaxial film,” Appl. Opt. 48(1), 127–133 (2009).
    [Crossref] [PubMed]
  25. X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
    [Crossref]
  26. M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
    [Crossref]
  27. W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
    [Crossref]
  28. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
    [Crossref]
  29. D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
    [Crossref]
  30. S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surf. Interface Anal. 34(1), 262–265 (2002).
    [Crossref]
  31. G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
    [Crossref]
  32. D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
    [Crossref]

2014 (5)

C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
[Crossref]

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Y. Zhao, “Dynamic Shadowing Growth and Its Energy Applications,” Front. Energy Res. 2, 00038 (2014).
[Crossref]

Y. J. Jen, C. C. Chen, and C. Y. Jheng, “Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index,” Opt. Lett. 39(12), 3386–3389 (2014).
[Crossref] [PubMed]

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, “A double nanostructure for wide-angle antireflection on optical polymers,” Opt. Mater. Express 4(3), 568 (2014).

2013 (4)

C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
[Crossref]

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).

2012 (3)

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
[Crossref]

C. D. Valentin and D. Costa, “Anatase TiO2 surface functionalization by alkylphosphonic acid: ADFT+D study,” J. Phys. Chem. C 116(4), 2819–2828 (2012).
[Crossref]

2011 (1)

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

2010 (3)

D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
[Crossref]

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

2007 (2)

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

2006 (1)

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

2005 (3)

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

2002 (2)

S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surf. Interface Anal. 34(1), 262–265 (2002).
[Crossref]

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

2001 (2)

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

2000 (2)

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Arakawa, H.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

Batzill, M.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Beckers, N. A.

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

Brett, M. J.

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

Chen, C. C.

Chen, J.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Chen, Q.

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Choi, D. J.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Ci, S.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Costa, D.

C. D. Valentin and D. Costa, “Anatase TiO2 surface functionalization by alkylphosphonic acid: ADFT+D study,” J. Phys. Chem. C 116(4), 2819–2828 (2012).
[Crossref]

Cui, S.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Deniz, D.

D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
[Crossref]

Dhar, S.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Dho, J.

C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
[Crossref]

Dong, G. P.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

Dong, L.

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

Fan, Z.

Fan, Z. X.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

Fei, Y. J.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Feng, K. A.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Fleischauer, M. D.

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

Frankel, D. J.

D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
[Crossref]

Fujishima, A.

B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).

Furubayashi, Y.

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Goshonoo, K.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

Guo, S.

S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
[Crossref]

Halpegamage, S.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Hasegawa, T.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Hashimoto, S.

S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surf. Interface Anal. 34(1), 262–265 (2002).
[Crossref]

He, H.

He, H. B.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

He, Y. L.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

He, Z.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Hirose, Y.

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Hitosugi, T.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Hoang, N. L. H.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

Hoang, S.

S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
[Crossref]

Hochbaum, A. I.

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

Hosseinabadi, N.

B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).

Huang, J. B.

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

Ichitsubo, T.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Jang, H. K.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Jen, Y. J.

Jheng, C. Y.

Kaiser, N.

Kaleji, B. K.

B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).

Kasai, J.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

Kitao, O.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

Konuma, S.

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

Kramer, A.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Kuang, D. B.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Kundaliya, D. C.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Lad, R. J.

D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
[Crossref]

Larsen, G. K.

C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
[Crossref]

Lei, B. X.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Li, H. D.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Li, J.

C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
[Crossref]

Li, Z.

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Luttrell, T.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Mao, S.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Matsubara, E.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Mikami, M.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

Moriyama, M.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

Mullins, C. B.

S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
[Crossref]

Munzert, P.

Muramatsu, A.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Nakamura, S.

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

Nakamura, T.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Nakao, S.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Nie, Y. X.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Ogale, S. B.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Qi, H.

Qi, H. J.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

Rao, H. S.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Rickelt, F.

Salamanca-Riba, L. G.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Sato, N.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Schulz, U.

Shao, J. D.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

Shimada, T.

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Song, C.

C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
[Crossref]

Su, C. Y.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Sutter, E.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Takahashi, H.

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

Tanaka, A.

S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surf. Interface Anal. 34(1), 262–265 (2002).
[Crossref]

Tao, J.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Tian, G. L.

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

Tucker, R. T.

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

Ueda, A.

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Valentin, C. D.

C. D. Valentin and D. Costa, “Anatase TiO2 surface functionalization by alkylphosphonic acid: ADFT+D study,” J. Phys. Chem. C 116(4), 2819–2828 (2012).
[Crossref]

Venkatesan, T.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Vispute, R. D.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Wang, C.

C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
[Crossref]

Wang, C. H.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Wang, X.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Wang, X. J.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Wang, Y. F.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Wei, C. Y.

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

Wen, Z.

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Won, D. J.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Wu, W. Q.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Xiao, X.

Xiao, X. D.

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

Xing, L.

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Xiong, Y. Y.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Xu, Y. F.

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

Yamada, N.

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

Yang, P.

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

Yang, Y.

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Yi, K.

Yin, Z.

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Young, S. Y.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Yu, W.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Zhang, D. P.

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

Zhang, M. S.

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Zhang, N.

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Zhang, S. X.

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

Zhang, W. F.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

Zhang, Z.

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, “Dynamic Shadowing Growth and Its Energy Applications,” Front. Energy Res. 2, 00038 (2014).
[Crossref]

C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
[Crossref]

Acta Mater. (1)

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “Preferential formation of anatase in laser-ablated titanium dioxide films,” Acta Mater. 53(2), 323–329 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, “Photoluminescence in anatase titanium dioxide nanocrystals,” Appl. Phys. B 70(2), 261–265 (2000).
[Crossref]

Appl. Phys. Express (1)

N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa, “Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering,” Appl. Phys. Express 1, 115001 (2008).
[Crossref]

Appl. Phys. Lett. (2)

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition,” Appl. Phys. Lett. 90(21), 212106 (2007).
[Crossref]

C. Song, G. K. Larsen, and Y. Zhao, “Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling,” Appl. Phys. Lett. 102(23), 233101 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Appl. Surf. Sci. (1)

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci. 177(1–2), 8–14 (2001).
[Crossref]

Chem. Rev. (1)

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

X. D. Xiao, G. P. Dong, H. J. Qi, Z. X. Fan, H. B. He, and J. D. Shao, “Effects of annealing on microstructure and optical properties of TiO2 sculptured thin films,” Chin. Phys. Lett. 25(6), 2181–2184 (2008).
[Crossref]

Europhys. Lett. (1)

H. J. Qi, D. P. Zhang, J. D. Shao, and Z. X. Fan, “Matrix analysis of an anisotropic optical thin film,” Europhys. Lett. 70(1), 257–263 (2005).
[Crossref]

Front. Energy Res. (1)

Y. Zhao, “Dynamic Shadowing Growth and Its Energy Applications,” Front. Energy Res. 2, 00038 (2014).
[Crossref]

J. Appl. Phys. (2)

J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N. L. H. Hoang, S. Nakao, N. Yamada, and T. Hasegawa, “Properties of TiO2 based transparent conducting oxide thin films on GaN(0001) surfaces,” J. Appl. Phys. 107(5), 053110 (2010).
[Crossref]

S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase,” J. Appl. Phys. 102(1), 013701 (2007).
[Crossref]

J. Phys. Chem. C (2)

S. Hoang, S. Guo, and C. B. Mullins, “Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation,” J. Phys. Chem. C 116(44), 23283–23290 (2012).
[Crossref]

C. D. Valentin and D. Costa, “Anatase TiO2 surface functionalization by alkylphosphonic acid: ADFT+D study,” J. Phys. Chem. C 116(4), 2819–2828 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, “Raman scattering study on anataseTiO2 nanocrystals,” J. Phys. D Appl. Phys. 33(8), 912–916 (2000).
[Crossref]

Mater. Sci. Eng. B (1)

C. Wang, J. Li, and J. Dho, “Post-deposition annealing effects on the transparent conducting properties of anatase Nb:TiO2 films on glass substrates,” Mater. Sci. Eng. B 182, 1–5 (2014).
[Crossref]

Mater. Trans. (1)

Z. Li, L. Xing, N. Zhang, Y. Yang, and Z. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Mater. Trans. 52(10), 1939–1942 (2011).
[Crossref]

Nanoscale Res. Lett. (1)

Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, and J. Chen, “CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries,” Nanoscale Res. Lett. 8(1), 499 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

G. L. Tian, L. Dong, C. Y. Wei, J. B. Huang, H. B. He, and J. D. Shao, “Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature,” Opt. Mater. 28(8–9), 1058–1063 (2006).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, “Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study,” Phys. Rev. B 66(15), 155213 (2002).
[Crossref]

Sci Rep (2)

W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, and D. B. Kuang, “Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells,” Sci Rep 3, 1352 (2013).
[PubMed]

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci Rep 4, 4043 (2014).
[Crossref] [PubMed]

Scr. Mater. (1)

T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, and H. Takahashi, “On the preferential formation of anatase in amorphous titanium oxide film,” Scr. Mater. 53(9), 1019–1023 (2005).
[Crossref]

Surf. Interface Anal. (1)

S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surf. Interface Anal. 34(1), 262–265 (2002).
[Crossref]

Techn. (1)

B. K. Kaleji, N. Hosseinabadi, and A. Fujishima, ““Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping,” J. Sol-Gel Sci,” Techn. 65, 195–203 (2013).

Thin Solid Films (3)

R. T. Tucker, N. A. Beckers, M. D. Fleischauer, and M. J. Brett, “Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films,” Thin Solid Films 525, 28–34 (2012).
[Crossref]

T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate,” Thin Solid Films 516(17), 5750–5753 (2008).
[Crossref]

D. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films 518(15), 4095–4099 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD diffraction patterns of TNFs under different annealing conditions.
Fig. 2
Fig. 2 Raman spectra of TNFs with different annealing treatments.
Fig. 3
Fig. 3 Cross-sectional images of TNFs with different annealing temperatures: (a) as-deposition (b) 300°C, 2h (c) 400°C, 2h, (d) 500°C, 2h.
Fig. 4
Fig. 4 Top-view images of TNFs with different annealing temperatures: (a) as-deposition (b) 300°C, 2h (c) 400°C, 2h, (d) 500°C, 2h.
Fig. 5
Fig. 5 Ti 2p XPS spectra of TNFs with different annealing treatments.
Fig. 6
Fig. 6 Transmission spectra of TNFs with different thermal treatment conditions.
Fig. 7
Fig. 7 Transmission spectra of TM and TE polarized waves and Δn for TNFs with different thermal treatment conditions.

Tables (1)

Tables Icon

Table 1 The corresponding data of sharp peaks in samples with 400 and 500°C annealing.

Metrics