Abstract

Micro-structure of high dose He-implanted x-cut KTP is investigated. Rutherford backscattering spectroscopy/channeling (RBS/Channeling) and transmission electron microscopy (TEM) are used to examine the structural and lattice damage properties in KTP after 200keV He+-implantation and following thermal annealing. Lattice crack, lattice disorder and He-bubble are observed in different implantation regions. The results show that strain induced by implantation is released through non-elastic lattice deformation in KTP. The implications of these observations for KTP thin film fabrication by smart-cut method are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4

Yu-Jie Ma, Fei Lu, Bing-Xi Xiang, Jin-Lai Zhao, and Shuang-Chen Ruan
Opt. Mater. Express 7(9) 3204-3213 (2017)

Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide

Jiao-Jian Yin, Fei Lu, Xian-Bing Ming, Zhen-Hua Qin, and Yu-Jie Ma
Appl. Opt. 51(13) 2400-2406 (2012)

Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation

Yu-Jie Ma, Fei Lu, Xian-Bing Ming, Ming Chen, Xiu-Hong Liu, and Jiao-Jian Yin
Appl. Opt. 51(23) 5657-5663 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
    [Crossref]
  2. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
    [Crossref]
  3. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  5. Y. Sakashita and H. J. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemicalvapor deposition,” J. Appl. Phys. 77(11), 5995–5999 (1995).
    [Crossref]
  6. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
    [Crossref]
  7. F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
    [Crossref]
  8. J. G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68(18), 2523–2525 (1996).
    [Crossref]
  9. Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
    [Crossref]
  10. Q. Y. Tong and U. Gösele, “Semiconductor wafer bonding: Science and Technology,” John Wiley & Sons, New York, (1999).
  11. M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. B 108(3), 313–319 (1996).
    [Crossref]
  12. I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
    [Crossref]
  13. P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  14. Y. S. Liu, D. Dentz, and R. Belt, “High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz,” Opt. Lett. 9(3), 76–78 (1984).
    [Crossref] [PubMed]
  15. J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
  16. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett. 24(3), 127–129 (1999).
    [Crossref] [PubMed]
  17. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009).
    [Crossref] [PubMed]
  18. P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
    [Crossref]
  19. F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
    [Crossref]
  20. R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
    [Crossref]
  21. F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
    [Crossref]
  22. K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
    [Crossref]
  23. L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
    [Crossref]
  24. T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).
  25. A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
    [Crossref]

2009 (2)

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009).
[Crossref] [PubMed]

2008 (3)

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

2007 (1)

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

2005 (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

2004 (3)

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref] [PubMed]

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

2003 (2)

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

2002 (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

2001 (2)

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

1999 (1)

1996 (2)

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. B 108(3), 313–319 (1996).
[Crossref]

J. G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68(18), 2523–2525 (1996).
[Crossref]

1995 (2)

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
[Crossref]

Y. Sakashita and H. J. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemicalvapor deposition,” J. Appl. Phys. 77(11), 5995–5999 (1995).
[Crossref]

1990 (1)

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

1984 (1)

1976 (1)

J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).

1970 (1)

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Ahmad, R. U.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Akatsu, T.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Alexe, M.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Bakhru, H.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Beeker, Ch.

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

Belt, R.

Bierlein,

J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).

Bindner, P.

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

Boudrioua, A.

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

Bruel, M.

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. B 108(3), 313–319 (1996).
[Crossref]

Camarda, G. S.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Chang, T.

Chen, F.

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Clavelier, L.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Dechamp, J.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Deguet, C.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Dentz, D.

Ding, Y. J.

Dogheche, E.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Espinola, R. L.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Feldman, L. C.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Fick, J.

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

Fujino, Y.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Gheorma, I. L.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Gier, T. E.

J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).

Gitmans, F.

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
[Crossref]

Gösele, U.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

Gu, X.

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Guilloux-viry, M.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Gunji, S.

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

Günter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
[Crossref]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Hou, D.-C.

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Izuhara, T.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Khurgin, J. B.

Kim, K.

J. G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68(18), 2523–2525 (1996).
[Crossref]

Koechlin, M.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Lansiaux, X.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Lian, J.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Liu, H.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Liu, X.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Liu, Y. S.

Loulergue, J. C.

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

Lu, F.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Lu, Q.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Lu, Q.-M.

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Ma, L.

Madeira, F.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Maeda, M.

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

Makarov, M.

Mazen, F.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

McNab, S.

Moretti, P.

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

Moulet, J. S.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Nakata, Y.

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

Naramoto, H.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Okada, T.

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

Osgood, R. M.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Ozawa, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Perrin, A.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Pizzuto, F.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Poberaj, G.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Rabiei, P.

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Radu, I.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

Rao, H.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Reeves, M. E.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Remiens, D.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Richtarch, C.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Rigny, A.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Risk, W. P.

Rodgers, J. M.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Roy, A. N.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Ruterana, P.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

Sakashita, Y.

Y. Sakashita and H. J. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemicalvapor deposition,” J. Appl. Phys. 77(11), 5995–5999 (1995).
[Crossref]

Sato, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Scholz, R.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

Schrempel, F.

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

Segawa, H. J.

Y. Sakashita and H. J. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemicalvapor deposition,” J. Appl. Phys. 77(11), 5995–5999 (1995).
[Crossref]

Sitar, Z.

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
[Crossref]

Slattery, O.

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Sulser, F.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Szafraniak, I.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

Tan, Y.

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Tang, X.

Tauzin, A.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Tesfu, Y. M.

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Vlasov, Y.

Wang, L.

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Wesch, W.

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

Yamaguchi, S.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Yoon, J. G.

J. G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68(18), 2523–2525 (1996).
[Crossref]

Yoshimi, M.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Zhang, R.

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Zumsteg, J. D.

J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).

Zussy, M.

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

Appl. Phys. Lett. (4)

J. G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68(18), 2523–2525 (1996).
[Crossref]

P. Rabiei and P. Günter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79(16), 2558–2560 (2001).
[Crossref]

T. Izuhara, I. L. Gheorma, R. M. Osgood, A. N. Roy, H. Bakhru, Y. M. Tesfu, and M. E. Reeves, “Single-crystal barium titanate thin films by ion slicing,” Appl. Phys. Lett. 82(4), 616–618 (2003).

Appl. Phys., A Mater. Sci. Process. (1)

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, “Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1279–1282 (2004).
[Crossref]

Appl. Surf. Sci. (1)

F. Chen, Y. Tan, L. Wang, D.-C. Hou, and Q.-M. Lu, “Optical channel waveguides with trapezoidal-shape cross sections in KTiOPO4 crystal fabricated by ion implantation,” Appl. Surf. Sci. 254(6), 1822–1824 (2008).
[Crossref]

Elec. Lett. (1)

A. Tauzin, J. Dechamp, F. Madeira, F. Mazen, M. Zussy, C. Deguet, L. Clavelier, J. S. Moulet, C. Richtarch, T. Akatsu, M. Yoshimi, and A. Rigny, “3-inch single-crystal LiTaO3 films onto metallic electrode using smart cut technology,” Elec. Lett. 44(13), 822 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14(1), 65–67 (2002).
[Crossref]

Integr. Ferroelectr. (1)

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gösele, “Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding,” Integr. Ferroelectr. 55(1), 983–990 (2003).
[Crossref]

J. Appl. Phys. (4)

Y. Sakashita and H. J. Segawa, “Preparation and characterization of LiNbO3 thin films produced by chemicalvapor deposition,” J. Appl. Phys. 77(11), 5995–5999 (1995).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90(10), 5274–5277 (2001).
[Crossref]

J. D. Zumsteg, Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Mod. Phys. Lett. B (1)

R. Zhang, F. Lu, J. Lian, X. Liu, H. Liu, and Q. Lu, “Buried planar waveguide in KTiOPO4 formed by Cs+ ion exchange and Si+ ion implantation,” Mod. Phys. Lett. B 22(10), 755–762 (2008).
[Crossref]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (3)

F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, “Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He and Li ions,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 484–487 (2007).
[Crossref]

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. B 108(3), 313–319 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[Crossref]

Vacuum (1)

F. Gitmans, Z. Sitar, and P. Günter, “Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy,” Vacuum 46(8-10), 939–942 (1995).
[Crossref]

Other (1)

Q. Y. Tong and U. Gösele, “Semiconductor wafer bonding: Science and Technology,” John Wiley & Sons, New York, (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 RBS/channeling spectra (a) and damage profiles (b) of He+ ions implanted KTP with ion fluences of 6 × 1016, 8 × 1016 and 1 × 1017 ions/cm2. The aligned and random spectra are presented for comparison in (a), and the distribution of dpa for 6 × 1016 sample is presented in solid line in (b).
Fig. 2
Fig. 2 RBS of 8 × 1016 ions/cm2 He+-implanted KTP in as-implant and after annealing at 350°C for 1hour.
Fig. 3
Fig. 3 TEM of 6 × 1016 ions/cm2 He+ implanted x-cut KTP after 200°C annealing for 1h.
Fig. 4
Fig. 4 (a)~4(d). High-resolution TEM corresponding to the marked region (a),(b),(c) and (d) in Fig. 3, respectively.
Fig. 5
Fig. 5 TEM of 6 × 1016 ions/cm2 He+ implanted KTP after annealing at 600°C for 1h. The scale-bars at low left corner are 500nm, 100nm, 20nm and 20nm for Fig. 5(a), 5(b), 5(c) and 5(d) respectively. Basic lattice structure can be clearly seen in region A, B and C.
Fig. 6
Fig. 6 Distribution of lattice deformation near crack edge. The scale-bars at low left corner are 100nm, 20nm, 100nm and 20nm for Fig. 5(a), 5(b), 5(c) and 5(d) respectively.
Fig. 7
Fig. 7 Plan-view TEM images with different magnifications of sample implanted with ion fluence of 8 × 1016 ions/cm2 after annealing.

Tables (2)

Tables Icon

Table 1 Implantation Parameters for 200keV He+-Implanted KTP

Tables Icon

Table 2 Annealing parameters for He+-implanted KTP.

Metrics