Abstract

Monoclinic gallium oxide thin films were grown on (0001) sapphire at various substrate temperatures ranging from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The structural, optical and compositional properties of the films were analyzed by using x-ray diffraction, transmission electron microscopy, optical transmittance, and Rutherford backscattering spectroscopy. As the substrate temperature was increased to 800 °C, the gallium oxide film possesses single crystalline phase with a preferred growth orientation of (−201) plane and higher crystal quality than those at the other temperatures. Optical transmittance measurements reveal the films grown at 600-1000 °C exhibit a clear absorption edge at the deep ultraviolet region around 250 nm wavelength. Based on the results of Rutherford backscattering spectroscopy, the O/Ga ratio of gallium oxide film increased gradually with increasing substrate temperature. When the substrate temperature was raised to 800-1000 °C, the film composition was close to the formation of Ga2O3, indicating the O vacancies and defects were reduced. Furthermore, the films grown at 600 and 800 °C were chosen to fabricate solar-blind metal-semiconductor-metal photodetectors. At an applied bias of 5 V, the photodetector prepared with 800 °C-grown film has a lower dark current of 1.2 × 10−11 A and a higher responsivity of 0.903 A/W (at a wavelength of 250 nm) than those with 600 °C-grown films. The better device performance is ascribed to the higher crystal quality and fewer O vacancies in the 800 °C-grown film. Moreover, the results indicate the gallium oxide films presented in this study have high potential for deep ultraviolet photodetector applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tin gallium oxide solar-blind photodetectors on sapphire grown by molecular beam epitaxy

Partha Mukhopadhyay and Winston V. Schoenfeld
Appl. Opt. 58(13) D22-D27 (2019)

Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology

Daoyou Guo, Zhenping Wu, Peigang Li, Yuehua An, Han Liu, Xuncai Guo, Hui Yan, Guofeng Wang, Changlong Sun, Linghong Li, and Weihua Tang
Opt. Mater. Express 4(5) 1067-1076 (2014)

Optimizing the performance of a β-Ga2O3 solar-blind UV photodetector by compromising between photoabsorption and electric field distribution

Xia Wang, Zhenwei Chen, Daoyou Guo, Xiao Zhang, Zhenping Wu, Peigang Li, and Weihua Tang
Opt. Mater. Express 8(9) 2918-2927 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
    [Crossref]
  2. E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
    [Crossref]
  3. D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
    [PubMed]
  4. D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
    [Crossref]
  5. K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
    [Crossref]
  6. A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
    [Crossref]
  7. M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
    [Crossref]
  8. S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
    [Crossref]
  9. R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
    [Crossref] [PubMed]
  10. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
    [Crossref]
  11. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
    [Crossref]
  12. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
    [Crossref]
  13. T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
    [Crossref]
  14. D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
    [Crossref]
  15. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067–1076 (2014).
    [Crossref]
  16. P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, “Effects of crystallinity and point defects on optoelectronic applications of β-Ga₂O₃ epilayers,” Opt. Express 21(21), 24599–24610 (2013).
    [Crossref] [PubMed]
  17. T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).
  18. T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
    [Crossref]
  19. L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
    [Crossref]
  20. S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
    [Crossref]
  21. Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
    [Crossref] [PubMed]
  22. A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
    [Crossref]
  23. J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
    [Crossref]

2014 (4)

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4(5), 1067–1076 (2014).
[Crossref]

2013 (3)

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, “Effects of crystallinity and point defects on optoelectronic applications of β-Ga₂O₃ epilayers,” Opt. Express 21(21), 24599–24610 (2013).
[Crossref] [PubMed]

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

2011 (3)

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

2009 (1)

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

2008 (3)

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

2007 (2)

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
[Crossref]

2005 (1)

M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
[Crossref]

2004 (2)

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

2000 (2)

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
[Crossref] [PubMed]

1998 (1)

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

1995 (1)

A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
[Crossref]

Alvarez, J.

M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
[Crossref]

An, Y.

An, Y. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Arai, N.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

Arnold, S. P.

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

Aytur, O.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Barkad, H. A.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Benbakhti, B.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

BenMoussa, A.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Biyikli, N.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Chang, S. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

Chen, K.

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

Chen, K. M.

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Chong, Y. M.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Chu, X. L.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

De Jaeger, J. C.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Donati, S.

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

Endo, F.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

Fujita, S.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
[Crossref]

Garrido, J. A.

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

Giordanengo, B.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Guo, D.

Guo, D. Y.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Guo, L.

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

Guo, X.

Guo, X. C.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

He, J. H.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Hochedez, J. F.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Horng, R. H.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, “Effects of crystallinity and point defects on optoelectronic applications of β-Ga₂O₃ epilayers,” Opt. Express 21(21), 24599–24610 (2013).
[Crossref] [PubMed]

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Hsueh, H. H.

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Hsueh, H. T.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

Hsueh, T. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

Hu, J.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Huang, C. Y.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

Huang, G. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

Hung, M. T.

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Itzler, M.

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

Izpura, I.

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

Jiang, D. Y.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Jiang, Y. D.

Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
[Crossref] [PubMed]

Kartaloglu, T.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Kato, K.

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

Ke, J. J.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

Kimukin, I.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Koide, Y.

M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
[Crossref]

Kokubun, Y.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

Kumar, S. S.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Kumar, V.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Kung, P.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Lee, H. Y.

Lee, S. T.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Li, L.

Li, L. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Li, P.

Li, P. G.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Liao, M.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Liao, M. Y.

M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
[Crossref]

Lien, D. H.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Lien, W. C.

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Linsebigler, A.

A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
[Crossref]

Liu, H.

Liu, K. W.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Liu, Q.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Lu, G.

A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
[Crossref]

Manandhar, S.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Martinez, G.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Mattalah, M.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Mi, K.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Miura, K.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

Monroy, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

Munoz, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

Nakagomi, S.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

Noor-A-Alam, M.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Ohira, S.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

Okuno, T.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
[Crossref]

Oshima, T.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
[Crossref]

Ou, S. L.

P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, “Effects of crystallinity and point defects on optoelectronic applications of β-Ga₂O₃ epilayers,” Opt. Express 21(21), 24599–24610 (2013).
[Crossref] [PubMed]

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Ozbay, E.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Perkins, F. K.

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

Pisano, A. P.

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Prokes, S. M.

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

Ramana, C. V.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Ravadgar, P.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, “Effects of crystallinity and point defects on optoelectronic applications of β-Ga₂O₃ epilayers,” Opt. Express 21(21), 24599–24610 (2013).
[Crossref] [PubMed]

Razeghi, M.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Rubio, E. J.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Sandvik, P.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Sang, L.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Senesky, D. G.

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Shan, C. X.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Shen, D. Z.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Shen, X.

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

Shutthanandan, V.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Soltani, A.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Sun, C.

Sun, C. L.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Suzuki, N.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

Tang, W.

Tang, W. H.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Thevuthasan, S.

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

Tsai, D. S.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Tsai, M. L.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Tsai, T. Y.

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Tu, L. W.

Tut, T.

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

Unlu, M. S.

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

Walker, D.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Wang, G.

Wang, Z. L.

Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
[Crossref] [PubMed]

Wei, T. C.

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

Weng, W. Y.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

Wu, B. R.

Wu, Z.

Wu, Z. P.

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Wuu, D. S.

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

Yan, H.

Yao, B.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Yao, S. D.

Yates, J. T.

A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
[Crossref]

Yin, J. S.

Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
[Crossref] [PubMed]

Yu, Y. C.

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Zaghloul, M. E.

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

Zhang, J. Y.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Zhang, W.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Zhang, W. J.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Zhang, X. H.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

Zhang, Z.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Zhao, D. X.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Zhao, Y. M.

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Zhu, G.

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

Zou, R.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Zou, Y. S.

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

Appl. Phys. Express (1)

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on beta-Ga2O3 substrate,” Appl. Phys. Express 1(1), 011202 (2008).
[Crossref]

Appl. Phys. Lett. (6)

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105(2), 023507 (2014).
[Crossref]

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90(3), 031912 (2007).
[Crossref]

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76(4), 403–405 (2000).
[Crossref]

A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, W. J. Zhang, Y. M. Chong, Y. S. Zou, S. T. Lee, A. BenMoussa, B. Giordanengo, and J. F. Hochedez, “193nm deep ultraviolet, visible-blind cBN photodiodes using a new IDTs design based on cubic boron nitride,” Appl. Phys. Lett. 92(5), 053501 (2008).
[Crossref]

M. Y. Liao, Y. Koide, and J. Alvarez, “Thermally-stable visible-blind diamond photodiode using WC Schottky contact,” Appl. Phys. Lett. 87(2), 022105 (2005).
[Crossref]

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95(10), 103102 (2009).
[Crossref]

Electrochem. Solid-State Lett. (1)

T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochem. Solid-State Lett. 14(11), H434–H437 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Itzler, S. Donati, M. S. Unlu, and K. Kato, “Introduction to the issue on photodetectors and imaging,” IEEE J. Sel. Top. Quantum Electron. 10(4), 665–667 (2004).
[Crossref]

E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004).
[Crossref]

T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, “See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802006 (2014).

IEEE Sens. J. (1)

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film,” IEEE Sens. J. 11(4), 999–1003 (2011).
[Crossref]

J. Chem. Phys. (1)

A. Linsebigler, G. Lu, and J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995).
[Crossref]

J. Phys. Chem. C (1)

S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C 117(8), 4194–4200 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D Appl. Phys. 41(12), 125104 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007).
[Crossref]

Micron (1)

Z. L. Wang, J. S. Yin, and Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Sci Rep (1)

D. S. Tsai, W. C. Lien, D. H. Lien, K. M. Chen, M. L. Tsai, D. G. Senesky, Y. C. Yu, A. P. Pisano, and J. H. He, “Solar-blind photodetectors for harsh electronics,” Sci Rep 3, 2628 (2013).
[PubMed]

Semicond. Sci. Technol. (1)

J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[Crossref]

Sens. Actuators B Chem. (1)

L. Guo, X. Shen, G. Zhu, and K. Chen, “Preparation and gas-sensing performance of In2O3 porous nanoplatelets,” Sens. Actuators B Chem. 155(2), 752–758 (2011).
[Crossref]

Small (1)

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts,” Small 10(9), 1848–1856 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the fabricated gallium oxide MSM PD.
Fig. 2
Fig. 2 (a) XRD patterns of the gallium oxide films grown at various substrate temperatures (400–1000 °C) and (b) XRD rocking curves for (–201) plane of the films grown at 600, 800, and 1000 °C.
Fig. 3
Fig. 3 Transmittance spectra of the gallium oxide films grown at 400–1000 °C.
Fig. 4
Fig. 4 (a) Cross-sectional SEM image of the 800 °C-grown gallium oxide film on sapphire substrate and HR-TEM bright field images of the films grown at (b) 800 and (c) 1000 °C.
Fig. 5
Fig. 5 Current-voltage characteristics measured in dark for the PDs fabricated with 600 °C- and 800 °C-grown gallium oxide films. The inset is the cross-sectional schematic diagram of the PD device.
Fig. 6
Fig. 6 Spectral responsivities of the DUV detectors based on (a) 600 °C- and (b) 800 °C-grown gallium oxide films.
Fig. 7
Fig. 7 Transient response of the PD device fabricated with 800 °C-grown gallium oxide film.

Tables (2)

Tables Icon

Table 1 Atomic compositions of PLD-deposited gallium oxide films on sapphire substrates under various substrate temperatures measured by Rutherford backscattering spectroscopy.

Tables Icon

Table 2 Summary of the solar-blind MSM PDs fabricated with the gallium oxide films grown by various techniques. The crystalline states of gallium oxide films and device performances of PDs are compared.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

αhν=C (hν E g ) 1/2

Metrics