Abstract

The cross-relaxation process between the lower excited states of thulium ions has a strong influence on its main infrared emissions, but also in the population of higher excited states that lead to characteristic blue upconversion. This work investigates this process in LiNbO3:Tm3+ by means of time-resolved spectroscopy at high pressure. It is demonstrated that through the application of high-pressure it is possible to enhance its probability and to investigate its influence on the photoluminescence spectra and corresponding lifetimes of Tm3+. The results are analyzed in terms of the effect of high pressure on parameters such as Tm3+-Tm3+ distance through the equation-of-state of LiNbO3, refractive index or Tm3+-Tm3+ energy transfer characteristics (absorption/emission overlap integral), to conclude that the major multipole interaction responsible for cross-relaxation is the quadrupole-quadrupole interaction. This conclusion supports and clarifies previous dynamical models for energy transfer on the basis of spectroscopic studies carried out in LiNbO3:Tm3+ as a function of Tm3+ concentration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of the radiative properties via photon-plasmon interaction in Er3+-Tm3+-codoped tellurite glasses in the near infrared region

V.A.G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega
Opt. Express 22(17) 21122-21136 (2014)

Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass

Rolindes Balda, Joaquín Fernández, Sara García-Revilla, and Jose M. Fernández-Navarro
Opt. Express 15(11) 6750-6761 (2007)

Energy transfer processes in Tm3+-doped aluminate glass

Lu Yan, Zhisong Xiao, Fang Zhu, Feng Zhang, and Anping Huang
J. Opt. Soc. Am. B 27(3) 452-457 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys. 40(1), 297–302 (1969).
    [Crossref]
  2. J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  3. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-mm-M Tm:YALO Laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
    [Crossref]
  4. V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 mm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
    [Crossref]
  5. T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
    [Crossref]
  6. W. Risk, T. Gosnell, and A. Nurmikko, Compact blue-green lasers (Cambridge University Press, Cambridge, 2003).
  7. T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
    [Crossref]
  8. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
    [Crossref] [PubMed]
  9. E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
    [Crossref]
  10. E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
    [Crossref]
  11. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
    [Crossref]
  12. C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
    [Crossref] [PubMed]
  13. G. Dieke, Spectra and energy levels of rare-earth ions in crystals (Wiley, New York, 1968).
  14. M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
    [Crossref]
  15. M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
    [Crossref]
  16. K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
    [Crossref]
  17. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
    [Crossref] [PubMed]
  18. J. A. Barreda-Argüeso and F. Rodriguez, “Microscopio para la caracterización espectroscópica de una muestra,” (Patent PCT/ES2014/000049).
  19. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
    [Crossref] [PubMed]
  20. Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
    [Crossref]
  21. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
    [Crossref]
  22. L. Núñez and F. Cusso, “Polarized Absorption and Energy-Levels of LiNbO3:Tm and LiNbO3(MgO)Tm,” J. Phys. Condens. Matter 5(30), 5301–5312 (1993).
    [Crossref]
  23. G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).
  24. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16(16), 11907–11914 (2008).
    [Crossref] [PubMed]
  25. R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. B Condens. Matter 182, 427–436 (1969).
  26. A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
    [Crossref]
  27. Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
    [Crossref]
  28. L. Riseberg and H. Moos, “Multiphonon Ornit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,” Phys. Rev. 174(2), 429–438 (1968).
    [Crossref]
  29. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B Condens. Matter 1(7), 2961–2969 (1970).
    [Crossref]
  30. M. Schuurmans and J. van Dijk, “On Radiative and Non-radiative Decay Times in the Weak Coupling Limit,” Physica B 123(2), 131–155 (1984).
    [Crossref]
  31. M. Quintanilla, “Caracterización espectroscópica y aplicaciones de la conversión infrarrojo-visible en LiNbO3 y YF3 activados con iones Tm3+ y Er3+,” PhD Thesis (Universidad Autónoma de Madrid, Madrid, 2010).
  32. L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
    [Crossref]
  33. V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
    [Crossref]
  34. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
    [Crossref]
  35. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  36. R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
    [Crossref] [PubMed]
  37. A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).
  38. A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
    [Crossref]
  39. D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
    [Crossref]
  40. D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 66(2), 024207 (2002).
    [Crossref]
  41. J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
    [Crossref]
  42. M. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
    [Crossref]
  43. T. Kushida, “Energy-transfer and cooperative optical transitions in rare-earth doped inorganic materials.1. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
    [Crossref]

2011 (1)

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

2010 (1)

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

2008 (4)

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[Crossref]

G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16(16), 11907–11914 (2008).
[Crossref] [PubMed]

2007 (1)

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

2006 (1)

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

2005 (1)

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

2003 (1)

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
[Crossref]

2002 (2)

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 66(2), 024207 (2002).
[Crossref]

2001 (2)

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
[Crossref]

2000 (3)

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 mm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
[Crossref]

1999 (1)

1998 (1)

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

1996 (2)

L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
[Crossref]

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

1995 (3)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-mm-M Tm:YALO Laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

1993 (1)

L. Núñez and F. Cusso, “Polarized Absorption and Energy-Levels of LiNbO3:Tm and LiNbO3(MgO)Tm,” J. Phys. Condens. Matter 5(30), 5301–5312 (1993).
[Crossref]

1991 (1)

R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
[Crossref] [PubMed]

1990 (1)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

1986 (1)

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[Crossref]

1985 (1)

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

1984 (1)

M. Schuurmans and J. van Dijk, “On Radiative and Non-radiative Decay Times in the Weak Coupling Limit,” Physica B 123(2), 131–155 (1984).
[Crossref]

1973 (1)

T. Kushida, “Energy-transfer and cooperative optical transitions in rare-earth doped inorganic materials.1. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

1972 (1)

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B Condens. Matter 1(7), 2961–2969 (1970).
[Crossref]

1969 (2)

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. B Condens. Matter 182, 427–436 (1969).

L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys. 40(1), 297–302 (1969).
[Crossref]

1968 (1)

L. Riseberg and H. Moos, “Multiphonon Ornit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

1966 (1)

M. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

Adam, J. L.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Ballman, A.

L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys. 40(1), 297–302 (1969).
[Crossref]

Ballman, A. A.

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Barnett, J. D.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

Block, S.

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

Borstel, G.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
[Crossref]

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Bussières, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Caciuc, V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Cao, C. Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

Cao, Y.

Clarkson, W. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Cui, Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

Cusso, F.

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
[Crossref]

L. Núñez and F. Cusso, “Polarized Absorption and Energy-Levels of LiNbO3:Tm and LiNbO3(MgO)Tm,” J. Phys. Condens. Matter 5(30), 5301–5312 (1993).
[Crossref]

Da Jornada, J. A. H.

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

De, G.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

de Sousa, D. F.

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 66(2), 024207 (2002).
[Crossref]

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

deSandro, J. P.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B Condens. Matter 1(7), 2961–2969 (1970).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-mm-M Tm:YALO Laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

Forman, R. A.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Grudinin, A. B.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Gudel, H. U.

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

Han, Y. S.

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
[Crossref]

Hanna, D. C.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Hayward, R. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

He, S.

Hempstead, M.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Heo, J.

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
[Crossref]

Hernandes, A. C.

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

Hewes, R. A.

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. B Condens. Matter 182, 427–436 (1969).

Hobden, M.

M. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Huo, Y.

Jacobsen, S. M.

R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
[Crossref] [PubMed]

Jayaraman, A.

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[Crossref]

Jiang, S.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Johnson, L.

L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys. 40(1), 297–302 (1969).
[Crossref]

Jones, J. K.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Joubert, M. F.

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Kasamatsu, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
[Crossref]

Kim, N. S.

Kim, R.

Kushida, T.

T. Kushida, “Energy-transfer and cooperative optical transitions in rare-earth doped inorganic materials.1. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

La Mela, C.

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Lan, G. X.

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

Lebullenger, R.

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

Li, C.

Li, Y. D.

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

Lifante, G.

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
[Crossref]

Lin, Y. K.

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

Mauer, F. A.

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

McFarlane, R. A.

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

Mironov, D. I.

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B Condens. Matter 1(7), 2961–2969 (1970).
[Crossref]

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Moncorge, R.

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Moos, H.

L. Riseberg and H. Moos, “Multiphonon Ornit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Nikitichev, A. A.

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Nilsson, J.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Nunes, L. A. O.

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 66(2), 024207 (2002).
[Crossref]

Nunez, L.

L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
[Crossref]

Núñez, L.

L. Núñez and F. Cusso, “Polarized Absorption and Energy-Levels of LiNbO3:Tm and LiNbO3(MgO)Tm,” J. Phys. Condens. Matter 5(30), 5301–5312 (1993).
[Crossref]

Oblak, D.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Ono, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
[Crossref]

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Perlin, E. Y.

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

Pernas, P. L.

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Piermarini, G. J.

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

Piper, J. A.

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 mm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Postnikov, A. V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
[Crossref]

Qin, W.

Qin, W. P.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

Quintanilla, M.

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

Razumova, I. K.

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Reichle, D. J.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Riedener, T.

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

Riseberg, L.

L. Riseberg and H. Moos, “Multiphonon Ornit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Sanz-Garcia, J. A.

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Sanz-García, J. A.

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

Sarver, J. F.

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. B Condens. Matter 182, 427–436 (1969).

Schuurmans, M.

M. Schuurmans and J. van Dijk, “On Radiative and Non-radiative Decay Times in the Weak Coupling Limit,” Physica B 123(2), 131–155 (1984).
[Crossref]

Shen, D.

Shepherd, D. P.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Sinclair, E.

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Song, J.

Song, J. H.

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
[Crossref]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-mm-M Tm:YALO Laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

Sudesh, V.

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 mm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

Syassen, K.

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[Crossref]

Tittel, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

Tkachuk, A. M.

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

Tonucci, R. J.

R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
[Crossref] [PubMed]

Torchia, G. A.

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

Tropper, A. C.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Turner, P. W.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Ueda, K.

Valley, G. C.

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

van Dijk, J.

M. Schuurmans and J. van Dijk, “On Radiative and Non-radiative Decay Times in the Weak Coupling Limit,” Physica B 123(2), 131–155 (1984).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Wang, G.

Wang, H. F.

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

Wang, J.

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Wang, L.

Wang, Y.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

Warner, J.

M. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Wei, G.

Xu, Y. W.

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

Yano, Y.

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
[Crossref]

Yen, W. M.

R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
[Crossref] [PubMed]

Zhang, J. S.

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

Zhu, P.

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[Crossref]

Appl. Phys. B (1)

L. Nunez, G. Lifante, and F. Cusso, “Polarization effects on the line-strength calculations of Er3+-doped LiNbO3,” Appl. Phys. B 62, 485–491 (1996).
[Crossref]

Appl. Phys. Lett. (1)

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Electron. Lett. (1)

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 mm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

High Press. Res. (1)

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 mm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-mm-M Tm:YALO Laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Kasamatsu, Y. Yano, and T. Ono, “Laser-diode-pumped highly efficient gain-shifted thulium-doped fiber amplifier operating in the 1480-1510-nm band,” IEEE Photon. Technol. Lett. 13(5), 433–435 (2001).
[Crossref]

J. P. deSandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

J. Appl. Phys. (5)

L. Johnson and A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys. 40(1), 297–302 (1969).
[Crossref]

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817–2820 (2003).
[Crossref]

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[Crossref]

Y. K. Lin, Y. D. Li, Y. W. Xu, G. X. Lan, and H. F. Wang, “Raman-scattering study on pressure amorphization of LiNbO3 crystal,” J. Appl. Phys. 77(7), 3584–3585 (1995).
[Crossref]

J. A. H. Da Jornada, S. Block, F. A. Mauer, and G. J. Piermarini, “Phase-Transition and Compression of LiNbO3 under static high-pressure,” J. Appl. Phys. 57(3), 842–844 (1985).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Lumin. (4)

G. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets,” J. Lumin. 122–123, 128–130 (2007).

E. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, and W. Tittel, “Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,” J. Lumin. 130(9), 1586–1593 (2010).
[Crossref]

T. Riedener, H. U. Gudel, G. C. Valley, and R. A. McFarlane, “Infrared to Visible Up-Conversion in Cs3Yb2Cl9-Tm3+,” J. Lumin. 63(5-6), 327–337 (1995).
[Crossref]

M. Quintanilla, E. Cantelar, J. A. Sanz-Garcia, G. Lifante, G. A. Torchia, and F. Cusso, “Infrared energy transfer in Tm3+: LiNbO3,” J. Lumin. 128(5-6), 927–930 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

J. Phys. Condens. Matter (1)

L. Núñez and F. Cusso, “Polarized Absorption and Energy-Levels of LiNbO3:Tm and LiNbO3(MgO)Tm,” J. Phys. Condens. Matter 5(30), 5301–5312 (1993).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Kushida, “Energy-transfer and cooperative optical transitions in rare-earth doped inorganic materials.1. Transition probability calculation,” J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973).
[Crossref]

Nature (1)

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

M. Quintanilla, E. Cantelar, J. A. Sanz-García, and F. Cusso, “Growth and optical characterization of Tm3+-doped LiNbO3,” Opt. Mater. 30(7), 1098–1102 (2008).
[Crossref]

Opt. Spectrosc. (2)

A. M. Tkachuk, I. K. Razumova, M. F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, “Self-quenching of luminescence in YLF: Tm3+ crystals: I. Microscopic parameters and rates of energy transfer,” Opt. Spectrosc. 85, 885–892 (1998).

A. M. Tkachuk, I. K. Razumova, E. Y. Perlin, M. F. Joubert, and R. Moncorge, “Luminescence self-quenching in Tm3+: YLF crystals: II. The luminescence decay and macrorates of energy transfer,” Opt. Spectrosc. 90(1), 78–88 (2001).
[Crossref]

Phys. Lett. (1)

M. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Phys. Rev. (1)

L. Riseberg and H. Moos, “Multiphonon Ornit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Phys. Rev. B Condens. Matter (7)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B Condens. Matter 1(7), 2961–2969 (1970).
[Crossref]

R. A. Hewes and J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev. B Condens. Matter 182, 427–436 (1969).

D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+ → Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 65(9), 094204 (2002).
[Crossref]

D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B Condens. Matter 66(2), 024207 (2002).
[Crossref]

R. J. Tonucci, S. M. Jacobsen, and W. M. Yen, “Energy-Transfer Processes in the T-1(2G) and T-3(2G) Excited States of Ni2+:MgO,” Phys. Rev. B Condens. Matter 43(10), 7377–7385 (1991).
[Crossref] [PubMed]

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter 61(13), 8806–8813 (2000).
[Crossref]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence Mechanisms in Tm3+ Singly Doped and Tm3+, Ho3+ Doubly Doped Indium-Based Fluoride Glasses,” Phys. Rev. B Condens. Matter 41(8), 5364–5371 (1990).
[Crossref] [PubMed]

Physica B (1)

M. Schuurmans and J. van Dijk, “On Radiative and Non-radiative Decay Times in the Weak Coupling Limit,” Physica B 123(2), 131–155 (1984).
[Crossref]

Science (1)

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence,” Science 176(4032), 284–285 (1972).
[Crossref] [PubMed]

Other (4)

J. A. Barreda-Argüeso and F. Rodriguez, “Microscopio para la caracterización espectroscópica de una muestra,” (Patent PCT/ES2014/000049).

G. Dieke, Spectra and energy levels of rare-earth ions in crystals (Wiley, New York, 1968).

W. Risk, T. Gosnell, and A. Nurmikko, Compact blue-green lasers (Cambridge University Press, Cambridge, 2003).

M. Quintanilla, “Caracterización espectroscópica y aplicaciones de la conversión infrarrojo-visible en LiNbO3 y YF3 activados con iones Tm3+ y Er3+,” PhD Thesis (Universidad Autónoma de Madrid, Madrid, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) Optical absorption and (B) up-conversion photoluminescence via excitation at 795 nm of LiNbO3:Tm3+ at ambient conditions. On the right a partial scheme of Tm3+ energy states and the selected excitation scheme is added.
Fig. 2
Fig. 2 (A) Pressure dependence of the emission spectrum corresponding to 3H43H6 and 1G43H5 transitions after 476 nm excitation. (B) Decomposition of the emission spectrum at 2.2 GPa into four Lorentzian peaks. The inset shows the variation of the emission peaks with pressure.
Fig. 3
Fig. 3 (A) Variation of the emission spectra of LiNbO3:Tm3+ (2.5 mol%) in the visible and infrared ranges upon cw excitation at 476.5 nm. The infrared 3H43H6 emission peak at 12579 cm−1 (795.0 nm) shown in Fig. 2(a) is missed here because it appears at the spectral limit of the visible spectrometer. (B) Magnification of the variation with pressure of the 3F43H6 and 1G43F3 emission bands, and (C) pressure shifts of levels involved in the CR (3H63F4: 3H43F4).
Fig. 4
Fig. 4 Variation of the relative intensity of the main emission peaks of LiNbO3:Tm3+ with pressure. The relative variation for each peak is compared with the variation of the 3H43H6 peak taken as reference.
Fig. 5
Fig. 5 (A) Intensity decay curves corresponding to the 3H43H6 emission (795 nm) after pulsed excitation into the1G4 state (475 nm) in LiNbO3:Tm3+ (2.5 mol%) at different pressures. The decays can be fitted to single exponential functions (blue solid lines). (B) Pressure dependence of the associated lifetime calculated by fitting the experimental data I(t) to a single-exponential function. The grey dotted line is a linear fit to the data, added to guide the eye.
Fig. 6
Fig. 6 Dependence of the measured transfer probability on the hydrostatic pressure. The experimental WET data (blue points), have been obtained from the measured lifetime using Eq. (1), taking τW0 = 230 μs. The blue dashed-dotted line has been drawn to guide the eye. The figure includes the probabilities, calculated from Eqs. (3) and (5), for the three main orders of the interaction (d-d, d-q and q-q). (A) The calculated probabilities consider only variations in RDA due to pressure-induced volume compression by means of the LiNbO3 equation of state. (B) Calculated energy-transfer probabilities due to both variations in RDA and refractive index of LiNbO3.
Fig. 7
Fig. 7 (A) Spectral overlap of the donor emission and acceptor absorption in the considered cross-relaxation process. (B) Experimental WET (blue points) and calculated (orange dotted line) predictions for quadrupole–quadrupole interaction considering all possible contributions: RDA variations, refractive index changes and spectral overlap modification. The grey dashed lines have been calculated considering a ±0.1 cm−1/GPa error estimation in the shift coefficients of the peaks in order to illustrate the uncertainty of the calculation.

Tables (1)

Tables Icon

Table 1 Peak position at ambient pressure, ωi(P0), and linear pressure shifts, (∂ωi/∂P), of the emission peaks associated to all the measured transitions. The most intense ones are highlighted in bold type.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 τ exp = 1 τ rad + 1 τ NR + W ET = 1 τ W 0 + W ET
W NR = β el exp[ α( ΔE2ω ) ]
W ET = C DA (S) R DA S
C DA (6) = 3 4 c 4 Q A 4π n 4 τ 0 L D ( E ) L A (E) E 4 dE; C DA (8) = 135α 6 c 6 Q A 4 πn 4 τ 0 g D g A * g A g D * L D ( E ) L A (E) E 6 dE; C DA (10) = 225ε 8 c 8 Q A 4π n 4 τ 0 L D ( E ) L A (E) E 8 dE
V V 0 = ( R R 0 ) 3 = ( 1+ B 0 ' ( P B 0 ) ) 1 B 0 '
ΔV V = 6n ( n 2 1 )( n 2 +2 ) Δn

Metrics