Abstract

Photoinduced birefringence (PIB) is studied in thin films of Ge25As30S45 glass prepared by e-beam evaporation technique. Excitation of the material is done in air at 514.5 nm and the PIB is monitored with a He-Ne laser at 632.8nm (incident from the same side). Based on the obtained experimental results, we show that the local value of PIB in this material can reach a value of ≈0.11, which is, to the best of our knowledge, the highest value ever reported in the literature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of photoinduced birefringence vs As content in thin GeAsS films

K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallée, E. Knystautas, and T. Galstian
Opt. Mater. Express 3(6) 671-683 (2013)

As4S4 role on the photoinduced birefringence of silver-doped chalcogenide thin films

Sandra Helena Messaddeq, Olivier Boily, Silvia Helena Santagneli, Mohammed El-Amraoui, and Younès Messaddeq
Opt. Mater. Express 6(5) 1451-1463 (2016)

High efficiency and stability gratings recorded in GeAsS thin films

K. Palanjyan, Y. Ledemi, Y. Messaddeq, R. Vallée, and T. Galstian
Opt. Mater. Express 6(5) 1604-1612 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Kwak, J. T. Kim, and S. S. Lee, “Nonlinear optical-image processing in amorophous As2S3 thin films,” Appl. Opt. 28, 737–739 (1989).
    [Crossref] [PubMed]
  2. H. M. Kim, J. W. Jeong, C. H. Kwak, and S. S. Lee, “Binary phase spatial modulation using photoinduced anisotropy in amorphous As2S3 thin film,” Appl. Opt. 34(26), 6008–6011 (1995).
    [Crossref] [PubMed]
  3. K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).
  4. T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
    [Crossref]
  5. K. Tanaka and K. Ishida, “Photoinduced anisotropic structure in chalcogenide glasses,” J. Non-Cryst. Solids 227, 673–676 (1998).
    [Crossref]
  6. S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27(5), 363–365 (2002).
    [Crossref] [PubMed]
  7. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
    [Crossref]
  8. J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-Resolution Optical Sampling of 640-Gb/s Data Using Four-Wave Mixing in Dispersion-Engineered Highly Nonlinear As2S3 Planar Waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
    [Crossref]
  9. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [Crossref] [PubMed]
  10. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
    [Crossref]
  11. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
    [Crossref] [PubMed]
  12. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
    [Crossref]
  13. A. Yesayan and T. Galstyan, “Mode control in integrated optical devices via photoinduced birefringence,” IEEE J. Quantum Electron. 35(8), 1142–1145 (1999).
    [Crossref]
  14. G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).
  15. K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
    [Crossref] [PubMed]
  16. D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).
  17. M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
    [Crossref]
  18. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
    [Crossref] [PubMed]
  19. K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallee, E. Knystautas, and T. Galstian, “Study of photoinduced birefringence vs As content in thin GeAsS films,” Opt. Mater. Express 3, 671–683 (2013).
  20. M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
    [Crossref]
  21. K. Palanjyan, R. Vallee, and T. Galstian, “Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
    [Crossref]
  22. R. Clark Jones, “A new calculus for the treatment of optical systems V. A more general information, and description of another calculus,” J. Opt. Soc. Am. 37(2), 107 (1947).
    [Crossref]

2015 (1)

K. Palanjyan, R. Vallee, and T. Galstian, “Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

2013 (2)

K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallee, E. Knystautas, and T. Galstian, “Study of photoinduced birefringence vs As content in thin GeAsS films,” Opt. Mater. Express 3, 671–683 (2013).

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

2012 (1)

2010 (2)

2009 (1)

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (2)

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).

2005 (1)

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

2002 (1)

2001 (2)

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

1999 (1)

A. Yesayan and T. Galstyan, “Mode control in integrated optical devices via photoinduced birefringence,” IEEE J. Quantum Electron. 35(8), 1142–1145 (1999).
[Crossref]

1998 (2)

G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).

K. Tanaka and K. Ishida, “Photoinduced anisotropic structure in chalcogenide glasses,” J. Non-Cryst. Solids 227, 673–676 (1998).
[Crossref]

1997 (1)

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

1996 (1)

K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
[Crossref] [PubMed]

1995 (1)

1989 (1)

1947 (1)

Adarsh, K. V.

Adriaenssens, G. J.

G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).

Agarwal, A.

Anne, M. L.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Arsova, D.

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Barik, A. R.

Boussard-Pledel, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Bulla, D. A.

Bureau, B.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Carlie, N.

Charrier, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cheong, S. W.

Choi, D. Y.

Clark Jones, R.

Colas, F.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Compère, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Ding, Y. J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Duguay, M. A.

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

Eggleton, B. J.

Elliott, S. R.

G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).

Feng, N. N.

Galstian, T.

Galstyan, T.

A. Yesayan and T. Galstyan, “Mode control in integrated optical devices via photoinduced birefringence,” IEEE J. Quantum Electron. 35(8), 1142–1145 (1999).
[Crossref]

Galstyan, T. V.

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Hu, J. J.

Hwang, H. Y.

Hyodo, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Inoue, S.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Iredale, T.

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Ishida, K.

K. Tanaka and K. Ishida, “Photoinduced anisotropic structure in chalcogenide glasses,” J. Non-Cryst. Solids 227, 673–676 (1998).
[Crossref]

K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
[Crossref] [PubMed]

Jain, H.

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Jeong, J. W.

Katsufuji, T.

Keirsse, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Khan, P.

Kim, H. M.

Kim, J. T.

Kimerling, L.

Klebanov, M.

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Knystautas, E.

Kwak, C. H.

Le Person, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Lee, S. S.

Lenz, G.

Lhermite, H.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Loreal, O.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Luan, F.

Luther-Davies, B.

Lyubin, V.

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Madden, S.

Messaddeq, S. H.

Messaddeq, Y.

Nazabal, V.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Palanjyan, K.

Pamukchieva, V.

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Pant, R.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Pelusi, M. D.

Petit, L.

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Richardson, K.

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref] [PubMed]

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

Rode, A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

Ryan, J. V.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Saitoh, A.

K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).

Sangunni, K. S.

Skordeva, E.

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

Slusher, R. E.

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Spälter, S.

Tanaka, K.

K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).

K. Tanaka and K. Ishida, “Photoinduced anisotropic structure in chalcogenide glasses,” J. Non-Cryst. Solids 227, 673–676 (1998).
[Crossref]

K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
[Crossref] [PubMed]

Terakado, N.

K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).

Thienpont, H.

Tikhomirov, V. K.

G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).

Vallee, R.

Van Erps, J.

Vateva, E.

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Viens, J. F.

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

Villeneuve, A.

T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15(8), 1343–1347 (1997).
[Crossref]

Vinod, E. M.

Wang, R.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

Yanakata, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Yesayan, A.

A. Yesayan and T. Galstyan, “Mode control in integrated optical devices via photoinduced birefringence,” IEEE J. Quantum Electron. 35(8), 1142–1145 (1999).
[Crossref]

Yoshida, N.

K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
[Crossref] [PubMed]

Yu, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

Zimmermann, J.

Adv. Opt. Photonics (1)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

A. Yesayan and T. Galstyan, “Mode control in integrated optical devices via photoinduced birefringence,” IEEE J. Quantum Electron. 35(8), 1142–1145 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (4)

K. Tanaka and K. Ishida, “Photoinduced anisotropic structure in chalcogenide glasses,” J. Non-Cryst. Solids 227, 673–676 (1998).
[Crossref]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352(6-7), 584–588 (2006).
[Crossref]

G. J. Adriaenssens, V. K. Tikhomirov, and S. R. Elliott, “Mechanism and kinetics of photoinduced anisotropy in chalcogenide glasses,” J. Non-Cryst. Solids 227, 688–693 (1998).

K. Palanjyan, R. Vallee, and T. Galstian, “Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Optoelectron. Adv. Mater. (2)

D. Arsova, E. Skordeva, V. Pamukchieva, and E. Vateva, “Photoinduced changes in Ge-As-S thin films with various network rigidities,” J. Optoelectron. Adv. Mater. 7, 1259–1264 (2005).

K. Tanaka, A. Saitoh, and N. Terakado, “Giant photo-expansion in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. B (2)

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

M. Klebanov, V. Lyubin, D. Arsova, E. Vateva, and V. Pamukchieva, “Photoinduced anisotropy in photobleached Ge-As-S films,” Phys. B 301(3-4), 399–404 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Tanaka, K. Ishida, and N. Yoshida, “Mechanism of photoinduced anisotropy in chalcogenide glasses,” Phys. Rev. B Condens. Matter 54(13), 9190–9195 (1996).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmission spectra (in non-polarized light) of non-exposed (black, dotted curve) and exposed (red, solid curve) Ge25As30S45 thin films of 3 µm thickness. Samples were irradiated at 514 nm for 30 min.
Fig. 2
Fig. 2 Experimental setup used for the study of PIB: P-polarizer, M–mirror, λ/2- half-wave plate, S-sample; A-analyzer; F1 and F2-filters, d-diaphragm, D-detector.
Fig. 3
Fig. 3 Transmitted intensity of the probe beam (3 μm thick sample is used versus time for pump intensity of 8W/cm2. The points 1 and 1’ represent the established values of excitation and 2 and 2’ represent the established values of relaxation corresponding to the probe transmission without (drawn by triangles in the fig.) and with analyzer (drawn by squares in the fig.), respectively.
Fig. 4
Fig. 4 Dependence of the established values of PIB (under CW excitation) upon the excitation intensity for the 3 μm Ge25As30S45 thin film. The line is used to guide eyes only.
Fig. 5
Fig. 5 Experimentally measured dependence of the established output probe intensity upon the input pump intensity for the 3 μm Ge25As30S45 thin film. The line is used to guide eyes only.
Fig. 6
Fig. 6 Average (solid curve) and local maximum (at the input front of the ChG film, dotted curve) values of the established PIB as a function of pump intensity for the 3 μm Ge25As30S45 thin film. Solid and dashed lines are used to guide eyes only.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

J 1 = 2 2 T ^ [ e α +i φ e α +i φ ]
J 2 = 2 2 T[ cosθ× e α +i φ sinθ× e α +i φ 0 ]
I norm = J ^ 2 × J ^ 2 J ^ 1 × J ^ 1 = cos 2 θ× e 2 α + sin 2 θ× e 2 α 2×cosθ×sinθ× e ( α + α ) ×cos( φ φ ) e 2 α + e 2 α
I norm =0.5(1sin2θ×cosΔφ)
Δφ=arccos( 12× I norm sin2θ )
Δφ= 2π λ 0 0 L Δn(z)dz
Δn=μI(z)
I out = I 0 sin 2 ( Δφ 2 )= I 0 sin 2 ( 2π λ 0 0 L μI(z)dz 2 )

Metrics