Abstract

In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO3. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formation than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4

Yu-Jie Ma, Fei Lu, Bing-Xi Xiang, Jin-Lai Zhao, and Shuang-Chen Ruan
Opt. Mater. Express 7(9) 3204-3213 (2017)

Thick optical waveguides in lithium niobate induced by swift heavy ions (~10 MeV/amu) at ultralow fluences

José Olivares, Miguel L. Crespillo, Olga Caballero-Calero, María D. Ynsa, Angel García-Cabañes, Marcel Toulemonde, Christina Trautmann, and Fernando Agulló-López
Opt. Express 17(26) 24175-24182 (2009)

A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3

Hsu-Cheng Huang, Jerry I. Dadap, Ophir Gaathon, Irving P. Herman, Richard M. Osgood, Sasha Bakhru, and Hassaram Bakhru
Opt. Mater. Express 3(2) 126-142 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  2. K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
    [Crossref] [PubMed]
  3. Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
    [Crossref]
  4. S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
    [Crossref]
  5. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
    [Crossref]
  6. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
    [Crossref]
  7. H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
    [Crossref]
  8. H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
    [Crossref] [PubMed]
  9. M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
    [Crossref]
  10. E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
    [Crossref]
  11. G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
    [Crossref]
  12. A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
    [Crossref]
  13. D. Kanjijal, “Swift heavy ion-induced modification and track formation in materials,” Curr. Sci. 80, 1560 (2001).
  14. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  15. J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [Crossref]
  16. J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
    [PubMed]
  17. E. M. Bringa and R. E. Johnson, “Coulomb Explosion and Thermal Spikes,” Phys. Rev. Lett. 88(16), 165501 (2002).
    [Crossref] [PubMed]
  18. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
    [Crossref]
  19. J. Ziegler, 2008, http://www.srim.org .
  20. L. A. Giannuzzi, B. W. Kempshall, S. M. Schwarz, J. K. Lomness, B. I. Prenitzer, and F. A. Stevie, “FIB lift-out specimen preparation techniques,” in Introduction to Focused Ion Beams, (Springer, 2005), pp. 201–228.
  21. A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
    [Crossref]
  22. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
    [Crossref]
  23. D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
    [Crossref]
  24. C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
    [Crossref]
  25. A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
    [Crossref]
  26. R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
    [Crossref]
  27. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, 1986).
  28. W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (Academic Press, 1978).
  29. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
    [Crossref]
  30. G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
    [Crossref]
  31. B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
    [Crossref]
  32. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
    [Crossref]
  33. F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
    [Crossref]
  34. A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).
  35. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
    [Crossref]
  36. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
    [Crossref] [PubMed]
  37. W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
    [Crossref]
  38. A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
    [Crossref]
  39. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  40. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
    [Crossref]
  41. D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
    [Crossref] [PubMed]
  42. X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
    [Crossref]
  43. M. Hartmann and H. Trinkaus, “Evolution of gas-filled nanocracks in crystalline solids,” Phys. Rev. Lett. 88(5), 055505 (2002).
    [Crossref] [PubMed]
  44. C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
    [Crossref]
  45. A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E.-B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

2011 (3)

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

2010 (4)

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

2009 (3)

2008 (1)

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

2007 (5)

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

2006 (3)

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

2005 (3)

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

2004 (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

2003 (1)

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

2002 (4)

M. Hartmann and H. Trinkaus, “Evolution of gas-filled nanocracks in crystalline solids,” Phys. Rev. Lett. 88(5), 055505 (2002).
[Crossref] [PubMed]

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

E. M. Bringa and R. E. Johnson, “Coulomb Explosion and Thermal Spikes,” Phys. Rev. Lett. 88(16), 165501 (2002).
[Crossref] [PubMed]

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

2001 (1)

D. Kanjijal, “Swift heavy ion-induced modification and track formation in materials,” Curr. Sci. 80, 1560 (2001).

2000 (1)

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

1996 (1)

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

1995 (1)

E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
[Crossref]

1994 (1)

M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
[Crossref]

Agulló-Lópe, F.

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

Agulló-López, F.

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[PubMed]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Agulló-Rueda, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Bakhru, H.

H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
[Crossref]

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Bakhru, S.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Balanzat, E.

E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
[Crossref]

Baldinozzi, G.

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

Bentini, G. G.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Benyagoub, A.

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

Betz, N.

E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
[Crossref]

Bianconi, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

Boccanfuso, M.

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

Bouffard, S.

E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
[Crossref]

M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
[Crossref]

Bourdelle, K. K.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Brenier, R.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

Bringa, E. M.

E. M. Bringa and R. E. Johnson, “Coulomb Explosion and Thermal Spikes,” Phys. Rev. Lett. 88(16), 165501 (2002).
[Crossref] [PubMed]

Caballero, O.

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Caballero-Calero, O.

Canut, B.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Carrascosa, M.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Cherkashin, N.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Chiarini, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Claverie, A.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Crespillo, M. L.

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[PubMed]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Dadap, J. I.

De Nicola, P.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Decorse, C.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Diziain, S.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Djukic, D.

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Donnelly, S. E.

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

Duffy, D. M.

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
[Crossref]

Dunn, K.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Evans, J. H.

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

Evans-Lutterodt, K.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

Gaathon, O.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Garcia, G.

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

García, G.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

García, J. G.

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

García-Cabañes, A.

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[PubMed]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Geiss, R.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E.-B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Gischkat, T.

Gosset, D.

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

Grange, R.

Grimes, R. W.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Hartmann, M.

M. Hartmann and H. Trinkaus, “Evolution of gas-filled nanocracks in crystalline solids,” Phys. Rev. Lett. 88(5), 055505 (2002).
[Crossref] [PubMed]

Hartmann, T.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
[Crossref] [PubMed]

Hebras, X.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Herman, I. P.

Höche, T.

Horváth, Z. E.

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

Huang, H.-C.

Huang, M.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Ishimaru, M.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Jagielski, J.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Johnson, R. E.

E. M. Bringa and R. E. Johnson, “Coulomb Explosion and Thermal Spikes,” Phys. Rev. Lett. 88(16), 165501 (2002).
[Crossref] [PubMed]

Kanjijal, D.

D. Kanjijal, “Swift heavy ion-induced modification and track formation in materials,” Curr. Sci. 80, 1560 (2001).

Klaumünzer, S.

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

Kley, E.-B.

Kling, A.

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Krasheninnikov, A. V.

A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Kymissis, I.

Kysar, J. W.

D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
[Crossref] [PubMed]

Laulicht, B.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Le Caër, S.

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Lee, Y. S.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Letertre, F.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Li, F.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Li, Z.

D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
[Crossref] [PubMed]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Loubet, J. L.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

Malladi, G.

Mazerolles, L.

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

McClellan, K. J.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Menin, A.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Minervini, L.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Moll, S.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Monnet, I.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

Montanari, G. B.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Nguyen, P.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Nordlund, K.

A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

Nubile, A.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Ofan, A.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Olivares, J.

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[PubMed]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

Osgood, R. M.

D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
[Crossref] [PubMed]

H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
[Crossref]

H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood., “Helium-ion-induced radiation damage in LiNbO₃ thin-film electro-optic modulators,” Opt. Express 22(16), 19653–19661 (2014).
[Crossref] [PubMed]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Pászti, F.

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

Pécz, B.

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

Pertsch, T.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E.-B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

Potapenko, D. V.

D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
[Crossref] [PubMed]

Ramos, S. M. M.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

Rivera, A.

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

Roth, R. M.

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Sattonnay, G.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Schrempel, F.

Schwartz, K.

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

Sergeyev, A.

Shutthanandan, V.

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

Sickafus, K. E.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Simeone, D.

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

Simon, P.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Soares, J. C.

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Solntsev, A. S.

Steinbrück, A.

Studer, F.

M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
[Crossref]

Sugliani, S.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

Szenes, G.

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

Thevenard, P.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

Thevuthasan, S.

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

Thomé, L.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
[Crossref]

Tóth, L.

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

Toulemonde, M.

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (approximately 10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[PubMed]

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
[Crossref]

Trautmann, C.

Trinkaus, H.

M. Hartmann and H. Trinkaus, “Evolution of gas-filled nanocracks in crystalline solids,” Phys. Rev. Lett. 88(5), 055505 (2002).
[Crossref] [PubMed]

Tünnermann, A.

Valdez, J. A.

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Vanamurthy, L.

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Vishnyakov, V. M.

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

Wang, K.-M.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, X.-L.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Weber, W. J.

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
[Crossref]

Welch, D.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

Wesch, W.

Wu, L.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Ynsa, M. D.

Zhang, C. H.

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

Zhang, L.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Zhang, Y.

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
[Crossref]

Zhu, Y.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Appl. Phys. Lett. (6)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

J. Olivares, J. G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[Crossref]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood., “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation,” Appl. Phys., A Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Curr. Sci. (1)

D. Kanjijal, “Swift heavy ion-induced modification and track formation in materials,” Curr. Sci. 80, 1560 (2001).

J. Appl. Phys. (6)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

F. Agulló-López, G. García, and J. Olivares, “Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization,” J. Appl. Phys. 97(9), 093514 (2005).
[Crossref]

A. García-Navarro, F. Agulló-Lópe, M. Bianconi, J. Olivares, and G. García, “Kinetics of ion-beam damage in lithium niobate,” J. Appl. Phys. 101(8), 083506 (2007).

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007).
[Crossref]

A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

C. H. Zhang, S. E. Donnelly, V. M. Vishnyakov, and J. H. Evans, “Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC,” J. Appl. Phys. 94(9), 6017 (2003).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agulló-López, “Elastic (stress–strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy,” J. Phys. D Appl. Phys. 44(47), 475301 (2011).
[Crossref]

Nano Lett. (1)

D. V. Potapenko, Z. Li, J. W. Kysar, and R. M. Osgood, “Nanoscale strain engineering on the surface of a bulk TiO2 crystal,” Nano Lett. 14(11), 6185–6189 (2014).
[Crossref] [PubMed]

Nucl. Instrum. and Meth. B (1)

E. Balanzat, N. Betz, and S. Bouffard, “Swift heavy ion modification of polymers,” Nucl. Instrum. and Meth. B 105(1–4), 46–54 (1995).
[Crossref]

Nucl. Instrum. Meth. B (6)

Y. Zhang, W. J. Weber, V. Shutthanandan, and S. Thevuthasan, “Non-linear damage accumulation in Au-irradiated SrTiO3,” Nucl. Instrum. Meth. B 251(1), 127–132 (2006).
[Crossref]

M. Toulemonde, S. Bouffard, and F. Studer, “Swift heavy ions in insulating and conducting oxides: tracks and physical properties,” Nucl. Instrum. Meth. B 91(1–4), 108–123 (1994).
[Crossref]

C. Trautmann, M. Boccanfuso, A. Benyagoub, S. Klaumünzer, K. Schwartz, and M. Toulemonde, “Swelling of insulators induced by swift heavy ions,” Nucl. Instrum. Meth. B 191(1–4), 144–148 (2002).
[Crossref]

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modifications of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Meth. B 107(1–4), 194–198 (1996).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Meth. B 268(22), 3452–3457 (2010).
[Crossref]

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, and A. Claverie, “Comparison of platelet formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Meth. B 262(1), 24–28 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (5)

S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, and W. J. Weber, “Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes,” Phys. Rev. B 84(6), 064115 (2011).
[Crossref]

G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, “Tracks induced by swift heavy ions in semiconductors,” Phys. Rev. B 65(4), 045206 (2002).
[Crossref]

G. Baldinozzi, D. Simeone, D. Gosset, I. Monnet, S. Le Caër, and L. Mazerolles, “Evidence of extended defects in pure zirconia irradiated by swift heavy ions,” Phys. Rev. B 74(13), 132107 (2006).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Phys. Rev. Lett. (2)

E. M. Bringa and R. E. Johnson, “Coulomb Explosion and Thermal Spikes,” Phys. Rev. Lett. 88(16), 165501 (2002).
[Crossref] [PubMed]

M. Hartmann and H. Trinkaus, “Evolution of gas-filled nanocracks in crystalline solids,” Phys. Rev. Lett. 88(5), 055505 (2002).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Science (1)

K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, and T. Hartmann, “Radiation Tolerance of Complex Oxides,” Science 289(5480), 748–751 (2000).
[Crossref] [PubMed]

Other (6)

J. Ziegler, 2008, http://www.srim.org .

L. A. Giannuzzi, B. W. Kempshall, S. M. Schwarz, J. K. Lomness, B. I. Prenitzer, and F. A. Stevie, “FIB lift-out specimen preparation techniques,” in Introduction to Focused Ion Beams, (Springer, 2005), pp. 201–228.

L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, 1986).

W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (Academic Press, 1978).

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, “The role of electronic energy loss in ion beam modification of materials,” Curr. Opin. Solid State Mater. Sci. (2014), doi:.
[Crossref]

I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Ion induced changes in surface conditions observed with optical and atomic force microscopy. Panels (a) and (c) are optical images and panels (b) and (d) are AFM scans. Panels (a) and (b) show the effects of 195 keV He+ irradiation (Rp ~670 nm) with a fluence of 4 × 1016 cm−2; panels (c) and (d) show effects of 5 MeV Fe2+ irradiation (Rp ~2 μm) with a fluence of 1 × 1015 cm−2. The x and y axes in panels (b) and (d) both have scales of 5 μm/div, while the z axis has a scale of 35 nm/div in (b), and 250 nm/div in (d), respectively. Both panels (b and d) are displayed with a viewing angle of 60 degrees from sample surface. These images show clearly that shallow helium irradiation can give rise to surface cracking along lattice crystallographic axes, as indicated by the white arrow in (b), while iron irradiation results in isotropically oriented distributed surface deformations such as nanometer-scale hillocks. The height of these heavy-ion-induced protrusions is ~200 ± 40 nm, e.g., one of which is indicated by the white arrow in (d). The degree of the surface deformation scales with the near surface amorphization resulted from high electronic stopping. Note that the AFM scanned regions are indicated in the corresponding optical images in (a) and (c) with red arrows.
Fig. 2
Fig. 2 RBS/C measurements on 350 keV Fe+-irradiated LiNbO3 using the Nb sublattice. Experimental and SRIM data showing that the dominant damage mechanism in low-energy Fe+ irradiation is due to nuclear collisions. (a) RBS/C versus Fe-ion fluence showing the evolution of crystal damage with the variation in fluence. The sharp increase in background with a fluence of ~1 × 1014 cm−2 shows a threshold-like behavior for crystal amorphization. After a fluence of ~1 × 1015 cm−2, the dechanneling signal reaches the level of that from a randomized lattice, indicating the material is fully amorphized. (b) The calculation using Eq. (1) of an ~1 × 1014 cm−2 irradiation curve is shown by the blue line. The depth of the peak is ~110 nm below the surface in agreement with a SRIM simulation of most damaged location (~125 nm). (c) Cascading and overlapping of the defects. The data show that 5 × 1015 cm−2 iron irradiation results in broader amorphous layers (additional ~35 nm increase in thickness) than the case with a fluence of 1 × 1015 cm−2. (d) Data showing that annealing at different temperatures recovers the sample crystallinity.
Fig. 3
Fig. 3 In situ RBS/C measurements on 5 MeV Fe2+ irradiated LiNbO3 using Nb sublattice. (a) Results of RBS using a 2 MeV He+ probe to study damage evolution on surface. The data show that the critical fluence for damage formation is ~1 × 1013 cm−2 and that an irradiation fluence of ~1 × 1014 cm−2 gives rise to amorphization. Note that this critical fluence is approximately an order of magnitude smaller than that achieved using low-energy iron, as seen in Fig. 2. (b) RBS/C data as a function of fluence. Two dechanneling mechanisms are clearly seen; that in the higher channel (>700) is attributed to electronic damage, and that in channels 500~600 is attributed to nuclear collision. The contribution of both effects lowers the critical fluence for the emergence of lattice disorder and material amorphization.
Fig. 4
Fig. 4 RBS/C measurements on virgin (black), He+-irradiated (green), Fe+-irradiated (blue) and sequentially irradiated (orange) samples. A result from a fully randomized sample is also included for comparison. The corresponding energy and fluence of the irradiation conditions are described in the text. It is clear that the sequential irradiation results in cumulative damage. In particular, Fe+-induced damage is enhanced in the presence of long-range strain and dislocation network from the He inclusions at the stopping range.
Fig. 5
Fig. 5 Confocal micro-Raman imaging to visualize the modifications of phonon vibrations. In (a), 195 keV He+ irradiation was used. This shallow irradiation gives rise to lattice disorder, with most damage buried along lattice crystallographic axes. Surface cracking can also be observed. The imaging clearly shows at these locations, the forbidden mode (631 cm−1) is “turned on”, while the active mode signal is decreased (581 cm−1). In (b), 5 MeV Fe2+ irradiation gives rise to surface deformations. The locations of these deformations can also be illustrated using Raman forbidden-mode mapping.
Fig. 6
Fig. 6 Raman edge scan of Fe2+ irradiated and He+ and Fe2+ sequentially irradiated LiNbO3. Panels (a) and (c) are side views of optical images; panels (b) and (d) are the corresponding Raman edge-scan results. The insets show the intensity of the A1(TO4) active mode as a function of irradiation depth. In (a), a darker layer is seen, indicated by yellow arrows. Raman scanning in this layer shows a region of low-crystallinity, displayed as the red spectra in (b). In (c), besides the darker layer close to surface, additional dim line-like region at ~10 μm below is also observed, indicated by red arrow. The appearance of this line is attributed to helium-ion-induced nuclear damage. In (d), the evolution of the spectra at different locations is apparent. The inset in (d) clearly shows a transition region (~2 to ~4 μm in distance, region II). The width of this transition region is determined by the cumulative effects of the sequential irradiation.
Fig. 7
Fig. 7 HRTEM micrographs of Fe+-irradiated LiNbO3. The iron ion fluence is 1 × 1014 cm−2 at an ion energy of 350 keV. Figure 7(a) shows a cross-sectional image at a lower magnification ( × 80k); damage distribution is seen from the surface to a depth of ~210 nm. Figures 7(b)-7(d) are images at a higher magnification ( × 500k), showing more detailed defective regions at different depths below the surface: Fig. 7(b) at the surface, Fig. 7(c) at a depth of ~100 nm, and Fig. 7(d) at a depth of ~200 nm. It is clear from the zoomed-in micrographs that the size and the concentration of these nanometer-scale defects are depth-dependent, with the average size of ~4–6 nm and the highest concentration at a depth of ~100 nm. Notice that this depth is in accord with results from our previous RBS/C measurements; see Fig. 2(b). Figure 7(e) is an EDS line scan profile measuring O and Nb concentrations across two defective regions (top and bottom insets are the corresponding Z-contrast (dark field) STEM image and the signal after background subtraction, respectively). It is clear that non-uniform distribution of elemental composition is observed in such regions.
Fig. 8
Fig. 8 HRTEM micrographs of Fe+-irradiated [Fig. 8(a)] and He+- and Fe+-sequential irradiated [Fig. 8(b)] LiNbO3. The energies of the He+ and Fe+ ions are 200 keV (Rp ~700 nm) and 350 keV (Rp ~200 nm), with fluence of 1 × 1016 cm−2 and 1 × 1014 cm−2, respectively. A comparison of these two types of irradiation makes it clear that sequential irradiation gives rise to a more apparent image contrast in the defective regions. Further, several of these features exhibit faceted shapes (see the yellow labels for example). These more apparent features are attributed to the formation of higher stress field and crystallographically oriented dislocation network, resulted from He+ irradiation.

Tables (1)

Tables Icon

Table 1 Summary of the irradiation parameters and probing methods in our experiments. Results are discussed in each section of the paper.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K E 0 E 1 = Δ E = [ d E d x | i n ( K cos θ 1 ) + d E d x | o u t ( 1 cos θ 2 ) ] x [ S ] x
E i n = 1 2 ( E + E 0 ) , E o u t = 1 2 ( E 1 + K E ) , and E ~ E o 1 2 Δ E

Metrics