Abstract

This work investigates the material birefringence in a polymer strip waveguide which originates from thermal stress during the fabrication process. The stress is estimated through a comprehensive numerical study based on a realistic finite element model. The characteristics of birefringence are obtained in a generalized form and expressed by an empirical formula, which is applicable to various polymer materials. The developed formula can be employed to specify the photo-elastic birefringence of a polymer strip channel only by knowing the birefringence in its planar film. This will eliminate the necessity of extensive numerical analysis of thermal stress in such polymer waveguides, and accordingly help the management of stress-induced effects efficiently.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects

Md. Faruque Hossain, Hau Ping Chan, and Abbas Z. Kouzani
Opt. Express 22(8) 9334-9343 (2014)

Stress-induced birefringence control in optical planar waveguides

Xiuli Zhao, Chunfei Li, and Y. Z. Xu
Opt. Lett. 28(7) 564-566 (2003)

Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress

D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, and W. N. Ye
Opt. Lett. 29(20) 2384-2386 (2004)

References

  • View by:
  • |
  • |
  • |

  1. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19(12), 2000–2006 (1980).
    [Crossref] [PubMed]
  2. B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
    [Crossref]
  3. S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
    [Crossref]
  4. X. Zhao, Y. Z. Xu, and C. Li, “Birefringence control in optical planar waveguide,” J. Lightwave Technol. 21(10), 2352–2357 (2003).
    [Crossref]
  5. N. Belhadj, Y. Park, S. Larochelle, K. Dossou, and J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
    [Crossref] [PubMed]
  6. M. M. Milosevic, P. S. Matavulj, B. D. Timotijevic, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” J. Lightwave Technol. 26(13), 1840–1846 (2008).
    [Crossref]
  7. Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
    [Crossref]
  8. K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).
  9. S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
    [Crossref]
  10. M. F. Hossain, H. P. Chan, and A. Z. Kouzani, “Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects,” Opt. Express 22(8), 9334–9343 (2014).
    [Crossref] [PubMed]
  11. D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
    [Crossref]
  12. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  13. K. Saitoh, M. Koshiba, and Y. Tsuji, “Stress analysis method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides,” J. Lightwave Technol. 17(2), 255–259 (1999).
    [Crossref]
  14. M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27(21), 4678–4685 (2009).
    [Crossref]
  15. S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
    [Crossref]
  16. R. C. Dunne and S. K. Sitaraman, “An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach,” IEEE Trans. Electron. Packag. Manuf. 25(4), 326–334 (2002).
    [Crossref]
  17. Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci. 36(23), 2852–2862 (1996).
    [Crossref]
  18. S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
    [Crossref]
  19. Y. Terui and S. Ando, “Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms,” J. Photopolym. Sci. Technol. 18(2), 337–340 (2005).
    [Crossref]
  20. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
    [Crossref]
  21. M. F. Hossain, H. P. Chan, and M. A. Uddin, “Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique,” Appl. Opt. 49(3), 403–408 (2010).
    [Crossref] [PubMed]
  22. Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
    [Crossref]
  23. M. K. Szczurowski, T. Martynkien, G. S. Barabach, W. Urbanczyk, L. Khan, and D. J. Webb, “Measurement of stress-optic coefficient in polymers optical fibers,” Opt. Lett. 35, 2013–2015 (2010).

2014 (1)

2010 (2)

2009 (1)

2008 (4)

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

N. Belhadj, Y. Park, S. Larochelle, K. Dossou, and J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
[Crossref] [PubMed]

M. M. Milosevic, P. S. Matavulj, B. D. Timotijevic, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

2006 (3)

Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[Crossref]

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[Crossref]

2005 (2)

B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
[Crossref]

Y. Terui and S. Ando, “Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms,” J. Photopolym. Sci. Technol. 18(2), 337–340 (2005).
[Crossref]

2003 (2)

X. Zhao, Y. Z. Xu, and C. Li, “Birefringence control in optical planar waveguide,” J. Lightwave Technol. 21(10), 2352–2357 (2003).
[Crossref]

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
[Crossref]

2002 (2)

R. C. Dunne and S. K. Sitaraman, “An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach,” IEEE Trans. Electron. Packag. Manuf. 25(4), 326–334 (2002).
[Crossref]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

1999 (1)

1996 (2)

Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci. 36(23), 2852–2862 (1996).
[Crossref]

Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[Crossref]

1994 (1)

S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
[Crossref]

1981 (1)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

1980 (1)

Ando, S.

Y. Terui and S. Ando, “Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms,” J. Photopolym. Sci. Technol. 18(2), 337–340 (2005).
[Crossref]

Azaña, J.

Barabach, G. S.

Belhadj, N.

Blagoi, G.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

Blech, I. A.

Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[Crossref]

Boisen, A.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

Chan, H. P.

M. F. Hossain, H. P. Chan, and A. Z. Kouzani, “Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects,” Opt. Express 22(8), 9334–9343 (2014).
[Crossref] [PubMed]

M. F. Hossain, H. P. Chan, and M. A. Uddin, “Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique,” Appl. Opt. 49(3), 403–408 (2010).
[Crossref] [PubMed]

M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27(21), 4678–4685 (2009).
[Crossref]

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[Crossref]

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
[Crossref]

Cheben, P.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Cheng, S. Y.

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[Crossref]

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
[Crossref]

Chiang, K. S.

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[Crossref]

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
[Crossref]

Chow, C. K.

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Delâge, A.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Dossou, K.

Dunne, R. C.

R. C. Dunne and S. K. Sitaraman, “An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach,” IEEE Trans. Electron. Packag. Manuf. 25(4), 326–334 (2002).
[Crossref]

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Grattan, K. T. V.

B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
[Crossref]

Haefliger, D.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Hossain, M. F.

Inoue, Y.

S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
[Crossref]

Janz, S.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Keller, S.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

Khan, L.

Kim, Y. K.

Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci. 36(23), 2852–2862 (1996).
[Crossref]

Koshiba, M.

Kouzani, A. Z.

Lamontagne, B.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Larochelle, S.

Li, C.

Li, R. K. Y.

Lillemose, M.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

Lin, Y.

Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[Crossref]

Liu, Q.

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

Liu, W.

Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[Crossref]

Lor, K. P.

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Martynkien, T.

Mashanovich, G. Z.

Matavulj, P. S.

Milosevic, M. M.

Ohmori, Y.

S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
[Crossref]

Okamoto, K.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Park, Y.

Post, E.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Rahman, B. M. A.

B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
[Crossref]

Reed, G. T.

Saitoh, K.

Scherer, G. W.

Shen, Y.-L.

Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[Crossref]

Shi, F. G.

Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[Crossref]

Sitaraman, S. K.

R. C. Dunne and S. K. Sitaraman, “An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach,” IEEE Trans. Electron. Packag. Manuf. 25(4), 326–334 (2002).
[Crossref]

Somasiri, N.

B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
[Crossref]

Suresh, S.

Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[Crossref]

Suzuki, S.

S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
[Crossref]

Szczurowski, M. K.

Terui, Y.

Y. Terui and S. Ando, “Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms,” J. Photopolym. Sci. Technol. 18(2), 337–340 (2005).
[Crossref]

Timotijevic, B. D.

Tsuji, Y.

Uddin, M. A.

Urbanczyk, W.

Waldron, P.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Webb, D. J.

White, S. R.

Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci. 36(23), 2852–2862 (1996).
[Crossref]

Xu, D.-X.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Xu, Y. Z.

Ye, W. N.

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Zhao, X.

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Adv. Opt. Technol. (1)

D.-X. Xu, W. N. Ye, S. Janz, A. Delâge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, “Stress induced effects for advanced polarization control in silicon photonics components,” Adv. Opt. Technol. 2008, 689715 (2008).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

S. Suzuki, Y. Inoue, and Y. Ohmori, “Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure,” Electron. Lett. 30(8), 642–643 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. M. A. Rahman, N. Somasiri, and K. T. V. Grattan, “Birefringence compensation of silica waveguides,” IEEE Photon. Technol. Lett. 17(6), 1205–1207 (2005).
[Crossref]

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15(5), 700–702 (2003).
[Crossref]

IEEE Trans. Adv. Packag. (1)

Y. Lin, W. Liu, and F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[Crossref]

IEEE Trans. Electron. Packag. Manuf. (1)

R. C. Dunne and S. K. Sitaraman, “An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach,” IEEE Trans. Electron. Packag. Manuf. 25(4), 326–334 (2002).
[Crossref]

Intl. J. Micro. Opt. Technol. (1)

K. S. Chiang, S. Y. Cheng, H. P. Chan, Q. Liu, K. P. Lor, and C. K. Chow, “Realization of polarization-insensitive optical polymer waveguide devices,” Intl. J. Micro. Opt. Technol. 1, 644–650 (2006).

J. Appl. Phys. (1)

Y.-L. Shen, S. Suresh, and I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[Crossref]

J. Lightwave Technol. (4)

J. Micromech. Microeng. (1)

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[Crossref]

J. Photopolym. Sci. Technol. (1)

Y. Terui and S. Ando, “Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms,” J. Photopolym. Sci. Technol. 18(2), 337–340 (2005).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Polym. Eng. Sci. (1)

Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci. 36(23), 2852–2862 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross-section of a strip channel waveguide. The width and height of the strip are indicated by w and h. The aspect ratio R is defined as w/h.
Fig. 2
Fig. 2 Master curves of various stress relaxation modulus as used for different polymers.
Fig. 3
Fig. 3 Typical distributions of a) in-plane σ x , and b) out-of-plane σ y stress in a planar film (i.e., before etching) consisting film thickness of 3.0 µm.
Fig. 4
Fig. 4 Typical distributions of a) in-plane σ x , b) out-of-plane σ y , and c) z-component σ z of stress in the strip waveguide consisting width w = 3.0 µm and height h = 3.0 µm.
Fig. 5
Fig. 5 Calculated photo-elastic birefringence ( Δ n ) over the height of a strip channel for various combination of materials with dimensions of width w = 3.0 µm, and height h = 3.0 µm.
Fig. 6
Fig. 6 Variation of birefringence ( Δ n ) over the height of a strip channel (a) for different heights (h = 2 – 4 µm), width w = 3.0 µm and (b) for different widths (w = 2.25 – 4.5 µm), and height h = 3 µm.
Fig. 7
Fig. 7 Normalized photo-elastic birefringence in the strip waveguide for a wide range of material properties. a) Effects of elastic modulus of core and cladding materials, and b) effects of CTE and stress relaxation on the birefringence characteristics.
Fig. 8
Fig. 8 Normalized photo-elastic birefringence for various aspect ratio (R = 0.75 to 1.5) of strip waveguides. The birefringence is normalized by the value of that remains in the film before etching, and the position is normalized by the height of the respective strip channel.
Fig. 9
Fig. 9 Material birefringence (Δn) along the strip height obtained through the FE method (line with markers) and the empirical relation (smoothed line) in Eqs. (3) and (4) for various combinations of polymers. The empirical relation is deployed for two conditions: a) with considering the elastic modulus and b) without considering the elastic modulus.
Fig. 10
Fig. 10 Material birefringence (Δn) along the strip height obtained through the FE method (line with markers) and the empirical relation (smoothed line) in Eqs. (3) and (4) for various dimensions of waveguide and corresponding to the materials R4-R3 (Case 5 in Table 2).
Fig. 11
Fig. 11 a) Estimated photo-elastic birefringence (Δn) using the developed empirical relation for various widths of BCB strip channel, and b) comparison of modal birefringence simulated with (smoothed line) and without (dashed line) considering the photo-elastic birefringence of BCB and the previously published experimental results (points) for various dimensions of strip waveguide. The material birefringence is derived for the film birefringence (Δnfilm) of 0.0036.

Tables (2)

Tables Icon

Table 1 Material characteristics employed in the stress analysis

Tables Icon

Table 2 Various material combinations considered for the waveguide, and the corresponding stress and birefringence retained in the planar film (before etching)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n x = n 0 + C 1 σ x + C 2 ( σ y + σ z ) , n y = n 0 + C 1 σ y + C 2 ( σ x + σ z ) ,
n x n y =( C 1 C 2 )( σ x σ y )
Δn/Δ n film = k 0 exp( k 1 y n )+ k 2 ( y n /h) 2
k 0 =0.65+0.198(1 E n ) k 1 =3+2.45exp3(1R) k 2 =0.1+0.45(1R)

Metrics