Abstract

A procedure to obtain the Energy Transfer Upconversion parameter, γ, for Nd3+:YAG by using the Z-scan technique is presented in this paper. It was found γ = (2.0 ± 0.3) × 10−16 cm3/s, from the open aperture transmittance. Also obtained was the nonlinear refractive index, the polarizability difference and absorption cross-section difference between excited and ground state at 808.7 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Concentration dependence of energy transfer upconversion in Nd:YAG

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie
Opt. Mater. Express 5(5) 926-931 (2015)

Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda
J. Opt. Soc. Am. B 26(5) 1002-1007 (2009)

Characterising energy transfer upconversion in Nd-doped vanadates at elevated temperatures

S. Cante, S. J. Beecher, and J. I. Mackenzie
Opt. Express 26(6) 6478-6489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
    [Crossref]
  2. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
    [Crossref] [PubMed]
  3. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
    [Crossref]
  4. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
    [Crossref] [PubMed]
  5. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  6. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [Crossref] [PubMed]
  7. L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
    [Crossref]
  8. V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
    [Crossref]
  9. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002 (2009).
    [Crossref]
  10. W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
    [Crossref]
  11. R. C. Powell, Physics of Solid-State Lasers Materials (Springer-Verlag, 1998).
  12. V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. (to be published).
  13. D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
    [Crossref] [PubMed]
  14. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
    [Crossref]
  15. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
    [Crossref] [PubMed]
  16. L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65(17), 2121–2123 (1994).
    [Crossref]
  17. C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
    [Crossref]
  18. A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, 2013).
  19. A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5 : Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
    [Crossref]
  20. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
    [Crossref]
  21. S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
    [Crossref]
  22. S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
    [Crossref]
  23. J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
    [Crossref]
  24. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 microm,” Opt. Express 16(9), 6317–6323 (2008).
    [Crossref] [PubMed]
  25. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14(21), 1204–1206 (1989).
    [Crossref] [PubMed]
  26. O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
    [Crossref]
  27. R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorge, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18(2), 1553–1568 (2010).
    [Crossref] [PubMed]
  28. T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29(5), 1055 (2012).
    [Crossref]

2013 (1)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

2012 (1)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

2006 (2)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
[Crossref]

2005 (2)

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

2003 (1)

2001 (1)

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

2000 (1)

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

1999 (1)

1998 (4)

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

1997 (1)

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
[Crossref]

1996 (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
[Crossref]

1995 (1)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

1994 (1)

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65(17), 2121–2123 (1994).
[Crossref]

1989 (2)

Ait-Ameur, K.

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002 (2009).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5 : Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
[Crossref]

Andrade, T.

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Antipov, O.

Antipov, O. L.

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

Baesso, M. L.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5 : Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
[Crossref]

Bausá, L. E.

Bell, M. J. V.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Cassanho, A.

Catunda, R.

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Catunda, T.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29(5), 1055 (2012).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002 (2009).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 microm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
[Crossref] [PubMed]

A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5 : Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
[Crossref]

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
[Crossref]

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
[Crossref]

Chase, L. L.

Chen, Y. F.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Cruz, R. A.

Dantas, N. O.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Doualan, J. L.

Doualan, J.-L.

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Fornasiero, L.

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Fromager, M.

García-Solé, J.

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Godin, T.

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Huber, G.

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Impinnisi, P. R.

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
[Crossref]

Ivakin, E.

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002 (2009).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 microm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Jaque, D.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 microm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Jenssen, H. P.

Jestin,

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Kuck, S.

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Kuzhelev, A. S.

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

Lan, Y. P.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Lebullenger, F.

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

Lima, S. M.

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Lima, W. J.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Luk’yanov, A. Y.

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

Lupei, A.

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. (to be published).

Lupei, V.

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. (to be published).

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Margerie, J.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
[Crossref]

Martins, V. M.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Messias, D. N.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002 (2009).
[Crossref]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

Mix, E.

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Moncorge, R.

Moncorgé, R.

T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29(5), 1055 (2012).
[Crossref]

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
[Crossref]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Monte, A. F. G.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Myers, J. D.

Myers, M. J.

Nagtegaele, P.

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
[Crossref]

Oliveira, L. C.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
[Crossref]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65(17), 2121–2123 (1994).
[Crossref]

Payne, S. A.

Pilla, V.

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
[Crossref] [PubMed]

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
[Crossref]

Pollnau, M.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Powell, R. C.

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Said, A. A.

Sheik-Bahae, M.

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Smektala, Y.

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

Solé, J. G.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Soulard, R.

Tenorio, E.

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

Van Stryland, E. W.

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

Wilke, G. D.

Zilio, S. C.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
[Crossref]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65(17), 2121–2123 (1994).
[Crossref]

Zinov’ev, A. P.

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

Zinoviev, A.

Appl. Phys. B (1)

S. Kuck, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in rystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Appl. Phys. B Lasers Opt. (1)

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B Lasers Opt. 70(4), 487–490 (2000).
[Crossref]

Appl. Phys. Lett. (3)

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70(7), 817 (1997).
[Crossref]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65(17), 2121–2123 (1994).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd : YAG: Upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[Crossref]

J. Non-Cryst. Solids (2)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses – A review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

S. M. Lima, T. Andrade, R. Catunda, F. Lebullenger, Y. Smektala, Jestin, and M. L. Baesso, “Thermal and optical properties of chalcohalide glass,” J. Non-Cryst. Solids 284(1–3), 203–209 (2001).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. 35(5), 2649–2652 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (Amst) (1)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. (Amst) 35(9), 1724–1727 (2013).
[Crossref]

Phys. Rev. B (3)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (1)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-State-Absorption and up-Conversion Studies of Nd3+-Doped Single Crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

Quantum Electron. (1)

O. L. Antipov, A. S. Kuzhelev, A. Y. Luk’yanov, and A. P. Zinov’ev, “Changes in the refractive index of an Nd:YAG laser crystal on excitation of the Nd3+ ions,” Quantum Electron. 28(10), 867–874 (1998).
[Crossref]

Other (3)

A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, 2013).

R. C. Powell, Physics of Solid-State Lasers Materials (Springer-Verlag, 1998).

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 – Time resolved Z-scan measurement for (a) closed aperture, (b) open aperture and (c) the ratio closed/open at λ = 808.7 nm, chopper frequency f = 820 Hz, P = 120 mW and ω0 = 35μm.
Fig. 2
Fig. 2 – Transient transmittance obtained from both closed, 50% transmittance, and opened, 100% transmittance, Z-scan apertures. The solid lines are exponential fits.
Fig. 3
Fig. 3 – Open aperture transmittance variation as a function of average intensity, <I> = I0/2. For comparison it is also depicted the β = 0 case.
Fig. 4
Fig. 4 – Peak-and-valley transmittance variation, of the closed Z-scan curve, as a function of the saturation parameter at the peak position, for λ = 808.7 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n 2 = N t I s ( 2π n 0 f L 2 Δ α p i λ 4π Δσ )
d N ex dt = S τ 0 N t (1+S) τ 0 N ex γ N ex 2
N ex = N t (1+S) 2 +4βS (1+S) 2β
θ= φ P abs λK ds dT
Δ Φ o = 2π λ L eff   n 2 , 2P π w 2
θ Δ Φ o = φ 4K ds dT w 2 ( n 2 / α abs )
ΔT=Δσ L eff N ex .
Δφ= 2π λ L eff n 2 ' I S (1+S) 2 +4βS (1+S) 2β

Metrics