Abstract

Highly (001)-oriented Calcium Barium Niobate (CaxBa1-xNb2O6, CBN) thin films were grown on MgO by Radio-Frequency magnetron sputtering. Close-to-bulk film stoichiometry (Ca0.28Ba0.72Nb2O6) is obtained for an O2 fraction of 5% in the deposition chamber. At the annealing temperature of 1000 °C, (001) oriented thin films are achieved with lattice parameter in the c-direction and a chemical composition very close to that of the bulk, and a surface roughness of 2.8 nm RMS. The refractive index of the films is 2.21 at λ = 630 nm and 2.13 at λ = 1550 nm and a strong second harmonic signal can be generated nonlinearly in the films.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of epitaxial CaxBa1-xNb2O6 thin film based rib-waveguide structure on (001) MgO for electro-optic applications

Sébastien Vigne, Nadir Hossain, Faezeh Fesharaki, S. M. Humayun Kabir, Joëlle Margot, Ke Wu, and Mohamed Chaker
Opt. Express 24(25) 28573-28582 (2016)

Hybrid integration of Ca0.28Ba0.72Nb2O6 thin film electro-optic waveguides with silica/silicon substrates

Paul F. Ndione, Marcello Ferrera, David Duchesne, Luca Razzari, Mounir Gaidi, Mohamed Chaker, and Roberto Morandotti
Opt. Express 17(17) 15128-15133 (2009)

Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Cook and E. Wolf, Landolt-Bornstein, New Series (Springer – Verlag, 1979).
  2. P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
    [Crossref]
  3. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  4. C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
    [Crossref]
  5. R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
    [Crossref]
  6. M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
    [Crossref]
  7. C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
    [Crossref]
  8. K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
    [Crossref]
  9. E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
    [Crossref]
  10. P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
    [Crossref] [PubMed]
  11. C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
    [Crossref]
  12. P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
    [Crossref]
  13. S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
    [Crossref]
  14. R. Eason, Pulsed Laser Deposition of Thin Films (John Wiley & Sons Inc., 2007), Chap.9.
  15. M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
    [Crossref]
  16. M. Cuniot-Ponsard and J. M. Desvignes, “Bellemain, Epitaxial growth of SrxBa1−xNb2O6 (SBN) thin films on Pt coated MgO substrates: the determining control of platinum crystallographic orientation,” J. Mater. Sci. 41, 5302–5309 (2006).
  17. C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
    [Crossref]
  18. J. L. Vossen and W. Kern, Thin film processes II (Academic Press, 1991), Chap II-4.
  19. K. Takechi and M. A. Lieberman, “Effect of Ar addition to an O2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O2/Ar mixture plasma modeling and photoresist etching,” J. Appl. Phys. 90(7), 3205 (2001).
    [Crossref]
  20. D. Dorranian and M. Alizadeh, “Effect of negative oxygen ions on the characteristics of plasma in a cylindrical DC discharge,” J. Theor. Appl. Phys. 8(2), 122 (2014).
    [Crossref]
  21. M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
    [Crossref]
  22. P. K. Tien, “Light Waves in Thin Films and Integrated Optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  23. M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
    [Crossref]
  24. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
    [Crossref]
  25. Y. Sheng, X. Chen, T. Lukasiewicz, M. Swirkowicz, K. Koynov, and W. Krolikowski, “Calcium barium niobate as a functional material for broadband optical frequency conversion,” Opt. Lett. 39(6), 1330–1332 (2014).
    [Crossref] [PubMed]

2014 (2)

D. Dorranian and M. Alizadeh, “Effect of negative oxygen ions on the characteristics of plasma in a cylindrical DC discharge,” J. Theor. Appl. Phys. 8(2), 122 (2014).
[Crossref]

Y. Sheng, X. Chen, T. Lukasiewicz, M. Swirkowicz, K. Koynov, and W. Krolikowski, “Calcium barium niobate as a functional material for broadband optical frequency conversion,” Opt. Lett. 39(6), 1330–1332 (2014).
[Crossref] [PubMed]

2013 (2)

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

2011 (2)

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

2009 (1)

2008 (2)

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

2007 (2)

C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

2006 (3)

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

M. Cuniot-Ponsard and J. M. Desvignes, “Bellemain, Epitaxial growth of SrxBa1−xNb2O6 (SBN) thin films on Pt coated MgO substrates: the determining control of platinum crystallographic orientation,” J. Mater. Sci. 41, 5302–5309 (2006).

2003 (2)

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

2002 (1)

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

2001 (1)

K. Takechi and M. A. Lieberman, “Effect of Ar addition to an O2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O2/Ar mixture plasma modeling and photoresist etching,” J. Appl. Phys. 90(7), 3205 (2001).
[Crossref]

1996 (1)

P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
[Crossref]

1971 (1)

Alizadeh, M.

D. Dorranian and M. Alizadeh, “Effect of negative oxygen ions on the characteristics of plasma in a cylindrical DC discharge,” J. Theor. Appl. Phys. 8(2), 122 (2014).
[Crossref]

Barnes, E.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

Bayarjargal, L.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

Betzler, K.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Bulut, S.

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

Burianek, M.

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

Chaker, M.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Chen, H. Y.

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

Chen, X.

Cuniot-Ponsard, M.

M. Cuniot-Ponsard and J. M. Desvignes, “Bellemain, Epitaxial growth of SrxBa1−xNb2O6 (SBN) thin films on Pt coated MgO substrates: the determining control of platinum crystallographic orientation,” J. Mater. Sci. 41, 5302–5309 (2006).

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

Danilewsky, A.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

David, C.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Delprat, S.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Denev, S. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

Desvignes, J. M.

M. Cuniot-Ponsard and J. M. Desvignes, “Bellemain, Epitaxial growth of SrxBa1−xNb2O6 (SBN) thin films on Pt coated MgO substrates: the determining control of platinum crystallographic orientation,” J. Mater. Sci. 41, 5302–5309 (2006).

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

Dorranian, D.

D. Dorranian and M. Alizadeh, “Effect of negative oxygen ions on the characteristics of plasma in a cylindrical DC discharge,” J. Theor. Appl. Phys. 8(2), 122 (2014).
[Crossref]

Duchesne, D.

Durand, C.

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Ea-Kim, B.

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

Eßer, M.

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

Ferrera, M.

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Gaidi, M.

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Gelissen, M.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

Gopalan, V.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

Görler, G. P.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

Granzow, T.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Heeg, T.

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

Held, P.

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

Helsten, R.

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Hildmann, B. O.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

Imlau, M.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Jia, C. L.

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

Joschko, B.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

Klimm, D.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

Koynov, K.

Krolikowski, W.

Kryder, M. H.

C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
[Crossref]

Kumar, A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

Laughlin, D. E.

C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
[Crossref]

Lefeld-Sosnowska, M.

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Leroy, E.

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

Lieberman, M. A.

K. Takechi and M. A. Lieberman, “Effect of Ar addition to an O2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O2/Ar mixture plasma modeling and photoresist etching,” J. Appl. Phys. 90(7), 3205 (2001).
[Crossref]

Lukasiewicz, T.

Y. Sheng, X. Chen, T. Lukasiewicz, M. Swirkowicz, K. Koynov, and W. Krolikowski, “Calcium barium niobate as a functional material for broadband optical frequency conversion,” Opt. Lett. 39(6), 1330–1332 (2014).
[Crossref] [PubMed]

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Lummen, T. T. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

Malinowska, A.

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Mi, S. B.

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

Morandotti, R.

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Mortazy, E.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Muehlberg, M.

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

Mühlberg, M.

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

Ndione, P. F.

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Pandey, C. S.

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

Pankrath, R.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Paulmann, C.

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Razzari, L.

P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
[Crossref] [PubMed]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

Rioux, G.

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

Schreuer, J.

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

Schubert, J.

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

Sheng, Y.

Stade, J.

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

Stateikina, I.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Swirkowicz, M.

Y. Sheng, X. Chen, T. Lukasiewicz, M. Swirkowicz, K. Koynov, and W. Krolikowski, “Calcium barium niobate as a functional material for broadband optical frequency conversion,” Opt. Lett. 39(6), 1330–1332 (2014).
[Crossref] [PubMed]

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Tabat, M.

P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
[Crossref]

Takechi, K.

K. Takechi and M. A. Lieberman, “Effect of Ar addition to an O2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O2/Ar mixture plasma modeling and photoresist etching,” J. Appl. Phys. 90(7), 3205 (2001).
[Crossref]

Tayebati, P.

P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
[Crossref]

Tehranchi, A.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Tien, P. K.

Trivedi, D.

P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
[Crossref]

Tunyagi, A.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Ulex, M.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Urban, K.

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

Wang, C.

C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
[Crossref]

Wickleder, C.

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

Wierzchowski, W.

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Wieteska, K.

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Wöhlecke, M.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Woike, T.

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

Wu, K.

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Acta Mater. (1)

C. L. Jia, J. Schubert, T. Heeg, S. B. Mi, H. Y. Chen, B. Joschko, M. Burianek, M. Mühlberg, and K. Urban, “Tailoring the orientations of complex niobate films on perovskite substrates,” Acta Mater. 54(9), 2383–2391 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C. Wang, D. E. Laughlin, and M. H. Kryder, “Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using RF sputtering,” Appl. Phys. Lett. 90(17), 172903 (2007).
[Crossref]

R. Helsten, L. Razzari, M. Ferrera, P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, and R. Morandotti, “Pockels response in calcium barium niobate thin films,” Appl. Phys. Lett. 91(26), 261101 (2007).
[Crossref]

P. Tayebati, D. Trivedi, and M. Tabat, “Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V,” Appl. Phys. Lett. 69(8), 1023 (1996).
[Crossref]

Cryst. Res. Technol. (1)

M. Eßer, M. Burianek, P. Held, J. Stade, S. Bulut, C. Wickleder, and M. Mühlberg, “Optical characterization and crystal structure of the novel bronze type CaxBa1-xNb2O6 (x=0.28; CBN-28),” Cryst. Res. Technol. 38(6), 457–464 (2003).
[Crossref]

J. Am. Ceram. Soc. (1)

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94(9), 2699–2727 (2011).
[Crossref]

J. Appl. Phys. (3)

K. Takechi and M. A. Lieberman, “Effect of Ar addition to an O2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O2/Ar mixture plasma modeling and photoresist etching,” J. Appl. Phys. 90(7), 3205 (2001).
[Crossref]

M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, “Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1−xNb2O6),” J. Appl. Phys. 93(3), 1718 (2003).
[Crossref]

P. F. Ndione, M. Gaidi, C. Durand, M. Chaker, R. Morandotti, and G. Rioux, “Structural and optical properties of epitaxial CaxBa1-xNb2O6 thin films grown on MgO by pulsed laser deposition,” J. Appl. Phys. 103(3), 033510 (2008).
[Crossref]

J. Cryst. Growth (3)

S. B. Mi, C. L. Jia, K. Urban, T. Heeg, and J. Schubert, “Growth of CaxBa1−xNb2O6 thin films on MgO (1 0 0) by pulsed laser deposition,” J. Cryst. Growth 291(1), 243–248 (2006).
[Crossref]

M. Eßer, M. Burianek, D. Klimm, and M. Mühlberg, “Single Crystal Growth of the Tetragonal Tungsten Bronze CaxBa1–xNb2O6 (x = 0.28; CBN-28),” J. Cryst. Growth 240(1-2), 1–5 (2002).
[Crossref]

M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G. P. Görler, and B. O. Hildmann, “Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN),” J. Cryst. Growth 310, 2288–2294 (2008).
[Crossref]

J. Mater. Sci. (1)

M. Cuniot-Ponsard and J. M. Desvignes, “Bellemain, Epitaxial growth of SrxBa1−xNb2O6 (SBN) thin films on Pt coated MgO substrates: the determining control of platinum crystallographic orientation,” J. Mater. Sci. 41, 5302–5309 (2006).

J. Theor. Appl. Phys. (1)

D. Dorranian and M. Alizadeh, “Effect of negative oxygen ions on the characteristics of plasma in a cylindrical DC discharge,” J. Theor. Appl. Phys. 8(2), 122 (2014).
[Crossref]

Microelectron. Eng. (1)

E. Mortazy, I. Stateikina, A. Tehranchi, S. Delprat, M. Chaker, and K. Wu, “Low-loss CaxBa1-xNb2O6 ridge waveguide for electro-optic devices,” Microelectron. Eng. 88(3), 218–221 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, “Relaxor behavior of CaxBa1−xNb2O6 (0.18≤x≤0.35) tuned by Ca/Ba ratio and investigated by resonant ultrasound spectroscopy,” Phys. Rev. B 87(9), 094101 (2013).
[Crossref]

Radiat. Phys. Chem. (1)

K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Lukasiewicz, and C. Paulmann, “Synchrotron diffraction topography of SrxBa1-xNb2O6 (SBN), CaxBa1-xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1-yNb2O6 (CSBN) crystals,” Radiat. Phys. Chem. 93, 87–91 (2013).
[Crossref]

Other (5)

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, T. Woike, K. Betzler, M. Ulex, M. Imlau, and R. Pankrath, “Composition dependence of the phase transition temperature in SrxBa1−xNb2O6,” Phys. Status Solidi201, R49–R52 (2004) (a).
[Crossref]

J. L. Vossen and W. Kern, Thin film processes II (Academic Press, 1991), Chap II-4.

R. Eason, Pulsed Laser Deposition of Thin Films (John Wiley & Sons Inc., 2007), Chap.9.

W. R. Cook and E. Wolf, Landolt-Bornstein, New Series (Springer – Verlag, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Dependence of the deposition rate on the oxygen fraction in the deposition chamber for RF power of 300 W, pressure of 4 mTorr and substrate temperature of 200 °C.
Fig. 2
Fig. 2 Dependence of the Ca / Nb2 and Ba / Nb2 ratios in the as-deposited CBN thin films on the oxygen fraction in the deposition chamber. Other conditions are as in Fig. 1.
Fig. 3
Fig. 3 XRD θ-2θ patterns for thin films deposited at different oxygen fractions in the deposition chamber and crystallized ex-situ using RTA at 1000 °C for 60 s in an O2 background atmosphere.
Fig. 4
Fig. 4 XRD θ-2θ patterns of CBN / MgO deposited at 5% O2 fraction in the deposition chamber and annealed at a) 600 °C, b) 800 °C, c) 1000 °C and d) 1150 °C using RTA in an O2 background atmosphere for 60s.
Fig. 5
Fig. 5 Typical Φ-scan of the (211) reflection plane of CBN and BN for thin films deposited with 5% O2 fraction in the deposition chamber and annealed at 1000 °C. Solid squares represent the + 31° orientation and open squares are for the −31° orientation.
Fig. 6
Fig. 6 RBS spectrum of a CBN / MgO deposited with 5% O2 fraction in the deposition chamber and annealed at 1000°C using RTA in an O2 background atmosphere for 60s.
Fig. 7
Fig. 7 Transmittance of a 610 nm-thick CBN / MgO measured from 270 nm to 800 nm. The thin films are deposited with 5% O2 fraction in the deposition chamber and annealed at 1000°C using RTA in an O2 background atmosphere for 60s.
Fig. 8
Fig. 8 Prism coupling patterns (TE modes) of a 610 nm-thick CBN / MgO measured at (a) 630 nm and (b) 1550 nm. The thin films are deposited with 5% O2 fraction in the deposition chamber and annealed at 1000°C using RTA in an O2 background atmosphere for 60s.
Fig. 9
Fig. 9 Dispersion curve of the 610 nm-thick CBN film between 400 nm and 1700 nm wavelengths measured by ellipsometry (black line with plus-shaped points) with experimental data obtained at 630 nm, 960nm, 1310nm and 1550 nm by prism coupling (squares). For comparison, the dispersion curve for bulk CBN is also presented (red thick line) [23]. Inset: AFM scan of the measured CBN thin film with 2.8 nm RMS roughness.
Fig. 10
Fig. 10 Average power of the second harmonic generation signal with a wavelength of 405 nm in the forward and backward directions as a function of the input power of the fundamental beam (λ = 810 nm). The data were fitted with y = ax2.

Tables (1)

Tables Icon

Table 1 Sellmeier coefficients for CBN both in the bulk form and determined from ellipsometric measurements of the CBN thin films grown on MgO with 5% O2 fraction and annealed at 1000 °C by RTA in O2 background atmosphere.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P O 2 = F O 2 F O 2 + F Ar ,
n 2 (λ)=A+ B ( λ 2 C) ,
I 2ω =2 ( μ 0 ε 0 ) 3 2 ω 2 d 2 l 2 n ω 2 n 2ω I ω ( 0 ) 2 ( sin 1 2 Δkl 1 2 Δkl ) 2 ,

Metrics