Abstract

A bluish-white long persistence phosphor SrSiAl2N2O3:0.001Eu2+ was synthesized and its persistent luminescence and thermoluminescence properties were studied. Its afterglow time was 2490s. Its 1/t afterglow decaying behavior, broadness and highly high-temperature sides overlapping of the fading thermoluminescence curves indicated a trap depths continuous distributed condition. By subtracting the fading thermoluminescence curves from the least faded ones separately as an extension of the decay-time method, we found that almost all the resulting curves of the phosphor had similar valleys located in a narrow temperature range 140~150°C. This temperature range did not notably change with different fading times. Converted by Urbach's peak position method, this teperature range corresponded to an energy range of 0.826~0.846eV which gave an upper limit of trap depths having contribution to the afterglow performance. As this temperature range is fading time independent, it can be a useful characteristic temperature for trap depths, continuous distributed long persistence phosphors both in application and theory.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution

Jonas Botterman and Philippe F. Smet
Opt. Express 23(15) A868-A881 (2015)

Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study

Hermi F. Brito, Jorma Hölsä, Högne Jungner, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C.V. Rodrigues
Opt. Mater. Express 2(3) 287-293 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  2. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  3. Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
    [Crossref]
  4. C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
    [Crossref]
  5. Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
    [Crossref]
  6. V. G. Kravets, “Using eletron trapping materials for optical memory,” Opt. Mater. 16(3), 369–375 (2001).
    [Crossref]
  7. X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
    [Crossref]
  8. H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
    [Crossref]
  9. M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
    [Crossref]
  10. C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
    [Crossref]
  11. X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
    [Crossref]
  12. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  13. J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
    [Crossref]
  14. R. Chen, “On the calculation of activation energies and frequency factors from glow curves,” J. Appl. Phys. 40(2), 570–585 (1969).
    [Crossref]
  15. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  16. G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc. 60(6), 574–590 (1948).
    [Crossref]
  17. L. I. Grossweiner, “A note on the analysis of first-order glow curves,” J. Appl. Phys. 24(10), 1306–1307 (1953).
    [Crossref]
  18. J. T. Randall and M. H. F. Wilkins, “The phosphorescence of various solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 184(999), 347–364 (1945).
    [Crossref]
  19. C. E. May and J. A. Partridge, “Thermoluminescence kinetics of alpha-irradiated alkali halides,” J. Chem. Phys. 40(5), 1401–1409 (1964).
    [Crossref]
  20. R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
    [Crossref]
  21. R. Chen and S. A. A. Winer, “Effects of various heating rates on glow curves,” J. Appl. Phys. 41(13), 5227–5232 (1970).
    [Crossref]
  22. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  23. W. F. Hornyak and R. Chen, “Thermoluminescence and phosphorescence with a continuous distribution of activation energies,” J. Lumin. 44(1–2), 73–81 (1989).
    [Crossref]
  24. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
    [Crossref] [PubMed]
  25. A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).
  26. A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).
  27. E. Nakazawa, “A new method for the characterization of traps in luminescent materials,” Jpn. J. Appl. Phys. 23(9), 755–757 (1984).
    [Crossref]
  28. F. Urbach, ““Sitzungsberichte Akademie der Wissenshaften,” Wien,” Bet. 139(2A), 363–483 (1930).
  29. W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
    [Crossref]
  30. R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
    [Crossref]
  31. W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
    [Crossref]
  32. X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
    [Crossref] [PubMed]
  33. J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
    [Crossref]

2015 (1)

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

2014 (1)

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

2013 (1)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

2011 (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2008 (2)

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

2006 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

2005 (4)

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

2003 (2)

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

2002 (1)

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

2001 (2)

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

V. G. Kravets, “Using eletron trapping materials for optical memory,” Opt. Mater. 16(3), 369–375 (2001).
[Crossref]

2000 (1)

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

1999 (2)

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1994 (1)

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

1993 (1)

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

1989 (1)

W. F. Hornyak and R. Chen, “Thermoluminescence and phosphorescence with a continuous distribution of activation energies,” J. Lumin. 44(1–2), 73–81 (1989).
[Crossref]

1984 (1)

E. Nakazawa, “A new method for the characterization of traps in luminescent materials,” Jpn. J. Appl. Phys. 23(9), 755–757 (1984).
[Crossref]

1970 (1)

R. Chen and S. A. A. Winer, “Effects of various heating rates on glow curves,” J. Appl. Phys. 41(13), 5227–5232 (1970).
[Crossref]

1969 (2)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

R. Chen, “On the calculation of activation energies and frequency factors from glow curves,” J. Appl. Phys. 40(2), 570–585 (1969).
[Crossref]

1964 (1)

C. E. May and J. A. Partridge, “Thermoluminescence kinetics of alpha-irradiated alkali halides,” J. Chem. Phys. 40(5), 1401–1409 (1964).
[Crossref]

1953 (1)

L. I. Grossweiner, “A note on the analysis of first-order glow curves,” J. Appl. Phys. 24(10), 1306–1307 (1953).
[Crossref]

1948 (1)

G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc. 60(6), 574–590 (1948).
[Crossref]

1945 (1)

J. T. Randall and M. H. F. Wilkins, “The phosphorescence of various solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 184(999), 347–364 (1945).
[Crossref]

1930 (1)

F. Urbach, ““Sitzungsberichte Akademie der Wissenshaften,” Wien,” Bet. 139(2A), 363–483 (1930).

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Bos, A. J. J.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

Chan, T. S.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Chang, J. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Chen, R.

W. F. Hornyak and R. Chen, “Thermoluminescence and phosphorescence with a continuous distribution of activation energies,” J. Lumin. 44(1–2), 73–81 (1989).
[Crossref]

R. Chen and S. A. A. Winer, “Effects of various heating rates on glow curves,” J. Appl. Phys. 41(13), 5227–5232 (1970).
[Crossref]

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

R. Chen, “On the calculation of activation energies and frequency factors from glow curves,” J. Appl. Phys. 40(2), 570–585 (1969).
[Crossref]

Chiang, C. Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Delgado, A.

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Garlick, G. F. J.

G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc. 60(6), 574–590 (1948).
[Crossref]

Gibson, A. F.

G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc. 60(6), 574–590 (1948).
[Crossref]

Gómez-Ros, J. M.

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

Grossweiner, L. I.

L. I. Grossweiner, “A note on the analysis of first-order glow curves,” J. Appl. Phys. 24(10), 1306–1307 (1953).
[Crossref]

Hirosaki, N.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Hölsä, J.

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

Höppe, H. A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Hornyak, W. F.

W. F. Hornyak and R. Chen, “Thermoluminescence and phosphorescence with a continuous distribution of activation energies,” J. Lumin. 44(1–2), 73–81 (1989).
[Crossref]

Huang, W. Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Huppertz, H.

W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
[Crossref]

Iinuma, K.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

Kang, C. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Kowatari, M.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Koyama, D.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Kravets, V. G.

V. G. Kravets, “Using eletron trapping materials for optical memory,” Opt. Mater. 16(3), 369–375 (2001).
[Crossref]

Kuang, J. Y.

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

Lauterbach, R.

W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lee, B. J.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Lei, B. F.

Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

Li, Y.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Lin, Y. H.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, R. S.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Liu, Y. L.

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Luo, Y. S.

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Lutz, H.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Mao, A.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

May, C. E.

C. E. May and J. A. Partridge, “Thermoluminescence kinetics of alpha-irradiated alkali halides,” J. Chem. Phys. 40(5), 1401–1409 (1964).
[Crossref]

Mitomo, M.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Morys, P.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nakazawa, E.

E. Nakazawa, “A new method for the characterization of traps in luminescent materials,” Jpn. J. Appl. Phys. 23(9), 755–757 (1984).
[Crossref]

Niittykoski, J.

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Partridge, J. A.

C. E. May and J. A. Partridge, “Thermoluminescence kinetics of alpha-irradiated alkali halides,” J. Chem. Phys. 40(5), 1401–1409 (1964).
[Crossref]

Piters, T. M.

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

Poelman, D.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Randall, J. T.

J. T. Randall and M. H. F. Wilkins, “The phosphorescence of various solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 184(999), 347–364 (1945).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Sakuma, K.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Satoh, Y.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Schnick, W.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
[Crossref]

Seilmeier, A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

Sheu, H. S.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Shi, C. S.

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

Shimomura, Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Smet, P. F.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Suehiro, T.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Sun, X. Y.

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tang, Z. L.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Trojan-Piegza, J.

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

Uchida, S.

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Ueda, K.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Urbach, F.

F. Urbach, ““Sitzungsberichte Akademie der Wissenshaften,” Wien,” Bet. 139(2A), 363–483 (1930).

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Wang, C.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Wang, X.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Wang, X. J.

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Wang, X. X.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Wang, Y.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Watanabe, T.

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Wilkins, M. H. F.

J. T. Randall and M. H. F. Wilkins, “The phosphorescence of various solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 184(999), 347–364 (1945).
[Crossref]

Winer, S. A. A.

R. Chen and S. A. A. Winer, “Effects of various heating rates on glow curves,” J. Appl. Phys. 41(13), 5227–5232 (1970).
[Crossref]

Wu, Q.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Xie, R. J.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Xu, C. N.

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Yamamoto, Y.

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

Yoshimura, F.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Zhang, J. H.

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Zhang, X.

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Zhang, Z. T.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Zhao, Z.

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

Zheng, X.-G.

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Zhou, W. Z.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Zych, E.

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

A. Radiat. Prot. Dosim. (2)

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: I. synthetic glow curves,” A. Radiat. Prot. Dosim. 47(1–4), 473–477 (1993).

A. J. J. Bos, T. M. Piters, J. M. Gómez-Ros, and A. Delgado, “An intercomparison of glow curve analysis computer programs: II. measured glow curves,” A. Radiat. Prot. Dosim. 51(4), 257–264 (1994).

Appl. Phys. Lett. (1)

C. N. Xu, T. Watanabe, M. Akiyama, and X.-G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Bet. (1)

F. Urbach, ““Sitzungsberichte Akademie der Wissenshaften,” Wien,” Bet. 139(2A), 363–483 (1930).

Chem. Mater. (5)

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Z. Zhou, and R. S. Liu, “Chemical Pressure Control for Photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M=Sr, Ba) Oxynitride Phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+ -doped and Tb3+, Ca2+ -codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ -doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Y. L. Liu, B. F. Lei, and C. S. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[Crossref]

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Dalton Trans. (1)

X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, and Y. Wang, “Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu2+ phosphors for light-emitting devices and field emission displays,” Dalton Trans. 44(24), 11057–11066 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+,” J. Alloys Compd. 323–324, 326–330 (2001).
[Crossref]

J. Appl. Phys. (3)

R. Chen, “On the calculation of activation energies and frequency factors from glow curves,” J. Appl. Phys. 40(2), 570–585 (1969).
[Crossref]

L. I. Grossweiner, “A note on the analysis of first-order glow curves,” J. Appl. Phys. 24(10), 1306–1307 (1953).
[Crossref]

R. Chen and S. A. A. Winer, “Effects of various heating rates on glow curves,” J. Appl. Phys. 41(13), 5227–5232 (1970).
[Crossref]

J. Ceram. Soc. Jpn. (1)

R. J. Xie, N. Hirosaki, Y. Yamamoto, T. Suehiro, M. Mitomo, and K. Sakuma, “Fluorescence of Eu2+ in Strontium oxonitridoaluminosilicates (SiAlONS),” J. Ceram. Soc. Jpn. 113(7), 462–465 (2005).
[Crossref]

J. Chem. Phys. (1)

C. E. May and J. A. Partridge, “Thermoluminescence kinetics of alpha-irradiated alkali halides,” J. Chem. Phys. 40(5), 1401–1409 (1964).
[Crossref]

J. Electrochem. Soc. (2)

R. Chen, “Glow curves with general order kinetics,” J. Electrochem. Soc. 116(9), 1254–1257 (1969).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Lumin. (1)

W. F. Hornyak and R. Chen, “Thermoluminescence and phosphorescence with a continuous distribution of activation energies,” J. Lumin. 44(1–2), 73–81 (1989).
[Crossref]

J. Mater. Chem. (2)

W. Schnick, H. Huppertz, and R. Lauterbach, “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces,” J. Mater. Chem. 9(1), 289–296 (1999).
[Crossref]

Y. L. Liu, J. Y. Kuang, B. F. Lei, and C. S. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[Crossref]

J. Phys. Chem. B (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+ -doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Y. Sun, J. H. Zhang, X. Zhang, Y. S. Luo, and X. J. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. Nakazawa, “A new method for the characterization of traps in luminescent materials,” Jpn. J. Appl. Phys. 23(9), 755–757 (1984).
[Crossref]

Mater. Chem. Phys. (1)

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S -based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Materials (Basel) (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent Luminescence in Eu2+ -Doped Compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+ -doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, and S. Uchida, “The temperature dependence of luminescence from a long-lasting phosphor exposed to ionizing radiation,” Nucl. Instrum. Methods Phys. Res. A 480(2-3), 431–439 (2002).
[Crossref]

Opt. Mater. (1)

V. G. Kravets, “Using eletron trapping materials for optical memory,” Opt. Mater. 16(3), 369–375 (2001).
[Crossref]

Phys. Rev. B (1)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Proc. Phys. Soc. (1)

G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc. 60(6), 574–590 (1948).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. T. Randall and M. H. F. Wilkins, “The phosphorescence of various solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 184(999), 347–364 (1945).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The XRD pattern of SrSiAl2N2O3:0.001Eu2+ and calculated x-ray diffraction curve of The Inorganic Crystal Structure Database ICSD#408170.
Fig. 2
Fig. 2 The decay curve of the persistent luminescence of the SrSiAl2N2O3:0.001Eu2+ phosphor. Intensity was converted into its reciprocal in order to reveal the relationship between time and afterglow. The sample was illuminated by an artificial sunlight light source with illuminance of 1100lx for 15min at room temperature.
Fig. 3
Fig. 3 Fading thermoluminescence curves (FTLCs) which were measured at different fading times 5s, 10s, 100s, 200s, 300s, 600s, 1200s, 2400s, 17h and 100h, respectively. Illumination was performed by a set of 254nm (8W) + 365nm (8W) ultraviolet lamps. Illumination time was 5min. Thermoluminescence was measured at a heating rate of 1K/s and 1.7mg sample was used.
Fig. 4
Fig. 4 Fading thermoluminescence curves (FTLCs) in an Arrhenius diagram. When energy unit is eV and temperature unit is K, the slopes of the straight parts on the low-temperature sides give an expression slop= E T / k B which can be used in evaluating trap depths of the FTLGs. Dash line marks an approximate boundary of data scope which can be used in the initial rise method (the straight line portion).
Fig. 5
Fig. 5 All curves obtained by subtracting fading thermoluminescence curves (FTLCs) from the 5s curve separately, except the 5s curve which was the same curve in Fig. 3 and (B) shows details of (A) around 150°C. The arrow pointed at the valleys.

Tables (1)

Tables Icon

Table 1 Trap depths estimated by Urbach's peak position method and the initial rise method. Unit is eV.

Metrics