Abstract

Experimental results of third-order optical nonlinearities of chalcogenide glasses (ChGs) within Ge–Sn–Se ternary system at a mid-infrared window of 3 and 3.5 μm are presented in this study. Using femtosecond Z-scan technique, positive nonlinear refractive indexes (n2) of the ChGs were obtained at the mid-infrared wavelengths, with no nonlinear absorption observed. The n2 values at 3 μm were lower than those at 3.5 μm because of the presence of hydroxyl (–OH) group. The maximum n2 was obtained from the Ge–Sn–Se ChGs with highest Sn content, reaching 2.43 × 10−17 m2/W at 3.5 μm, near two times that of As2Se3 glass. Thus, Ge–Sn–Se ChGs can be regarded as a good candidate for photonic devices that operated at mid-infrared window.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system

Shixun Dai, Feifei Chen, Yinsheng Xu, Zhe Xu, Xiang Shen, Tiefeng Xu, Rongping Wang, and Wei Ji
Opt. Express 23(2) 1300-1307 (2015)

Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system

Ruiqiang Lin, Feifei Chen, Xiaoyu Zhang, Yicong Huang, Baoan Song, Shixun Dai, Xianghua Zhang, and Wei Ji
Opt. Express 25(21) 25674-25688 (2017)

Glass formation and mid-infrared optical nonlinearities of chalcogenide glasses in germanium-tin-sulfur ternary system

Yicong Huang, Feifei Chen, Ruiqiang Lin, Xiaoyu Zhang, Shixun Dai, Qiuhua Nie, and Xianghua Zhang
Opt. Mater. Express 6(10) 3053-3062 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).
  2. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  3. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  4. B. Luther-Davies, “Chalcogenide materials for nonlinear photonics in the near and middle infrared,” in 2014 OptoElectronics and Communication Conference, OECC 2014 and Australian Conference on Optical Fibre Technology, ACOFT 2014 (2014), pp. 401–403.
  5. G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
    [Crossref]
  6. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [Crossref] [PubMed]
  7. M. Olivier, J. C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014).
    [Crossref]
  8. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  9. E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
    [Crossref] [PubMed]
  10. K. Tanaka, “Two-photon optical absorption in amorphous materials,” J. Non-Cryst. Solids 338–340, 534–538 (2004).
    [Crossref]
  11. S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
    [Crossref] [PubMed]
  12. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
    [Crossref] [PubMed]
  13. I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
    [Crossref]
  14. A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
    [Crossref] [PubMed]
  15. W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
    [Crossref]
  16. J. M. Mikrut and L. E. McNeil, “Fragmentation of the molecular cluster network of amorphous Ge1-xSnxSe2,” J. Non-Cryst. Solids 109(2-3), 237–246 (1989).
    [Crossref]
  17. J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
    [Crossref]
  18. Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
    [Crossref]
  19. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  20. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  21. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
    [Crossref]
  22. J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
    [Crossref]
  23. K. Tanaka, “Layer structures in chalcogenide glasses,” J. Non-Cryst. Solids 103(1), 149–150 (1988).
    [Crossref]
  24. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
    [Crossref]
  25. A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95−x chalcogenide glasses,” J. King Saud Univ. - Sci. 21, 93–97 (2009).
  26. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref] [PubMed]
  27. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
    [Crossref] [PubMed]
  28. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
    [Crossref]

2015 (2)

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
[Crossref] [PubMed]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

2009 (1)

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95−x chalcogenide glasses,” J. King Saud Univ. - Sci. 21, 93–97 (2009).

2008 (2)

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref] [PubMed]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

2004 (1)

K. Tanaka, “Two-photon optical absorption in amorphous materials,” J. Non-Cryst. Solids 338–340, 534–538 (2004).
[Crossref]

2002 (1)

2000 (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
[Crossref]

1996 (1)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

1992 (1)

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (2)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
[Crossref]

1989 (1)

J. M. Mikrut and L. E. McNeil, “Fragmentation of the molecular cluster network of amorphous Ge1-xSnxSe2,” J. Non-Cryst. Solids 109(2-3), 237–246 (1989).
[Crossref]

1988 (1)

K. Tanaka, “Layer structures in chalcogenide glasses,” J. Non-Cryst. Solids 103(1), 149–150 (1988).
[Crossref]

1979 (1)

J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[Crossref]

1972 (1)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Abdel-Moneim, N. S.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Abouraddy, A. F.

Adam, A. B.

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95−x chalcogenide glasses,” J. King Saud Univ. - Sci. 21, 93–97 (2009).

Aggarwal, I. D.

Barney, E. R.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Baudet, E.

Besse, V.

Boidin, R.

Bookey, H. T.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Boudebs, G.

Cassagne, C.

Chauvet, M.

Chen, F.

Chen, Y.

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Croitoru, N.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
[Crossref]

Cui, Y.

Dai, S.

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Dror, J.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Fang, L.

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

Furniss, D.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Gai, X.

Gopal, E. S. R.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

Gosciniak, J.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Harbold, J. M.

Haruvi-Busnach, I.

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
[Crossref]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Ilday, F. Ö.

Ji, W.

Kar, A.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Khalilzadeh-Rezaie, F.

Khoo, I. C.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Luther-Davies, B.

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref] [PubMed]

Madden, S.

Madhusoodanan, K. N.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

McCarthy, J. E.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

McNeil, L. E.

J. M. Mikrut and L. E. McNeil, “Fragmentation of the molecular cluster network of amorphous Ge1-xSnxSe2,” J. Non-Cryst. Solids 109(2-3), 237–246 (1989).
[Crossref]

Menth, A.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Mikrut, J. M.

J. M. Mikrut and L. E. McNeil, “Fragmentation of the molecular cluster network of amorphous Ge1-xSnxSe2,” J. Non-Cryst. Solids 109(2-3), 237–246 (1989).
[Crossref]

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Nazabal, V.

Nemec, P.

Nguyen, V. Q.

Nie, Q.

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Olivier, M.

Peale, R. E.

Philip, J.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

Phillips, J. C.

J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[Crossref]

Prasad, A.

Qian, G.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Ren, H.

Renversez, G.

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sakka, S.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Sanghera, J. S.

Seddon, A. B.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Shabahang, S.

Shaw, L. B.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, X.

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
[Crossref] [PubMed]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Smith, A.

Srinivasan, A.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Tan, D. T. H.

Tanaka, K.

K. Tanaka, “Two-photon optical absorption in amorphous materials,” J. Non-Cryst. Solids 338–340, 534–538 (2004).
[Crossref]

K. Tanaka, “Layer structures in chalcogenide glasses,” J. Non-Cryst. Solids 103(1), 149–150 (1988).
[Crossref]

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
[Crossref]

Tao, G.

Tauc, J.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Tchahame, J. C.

Titman, J.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Towey, J. J.

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Venkatram, N.

Wang, R.

Wang, R.-P.

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref] [PubMed]

Wang, T.

Wang, X.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, W.

Wei, W.-H.

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

Wise, F. W.

Xu, T.

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
[Crossref] [PubMed]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

Xu, Y.

Xu, Z.

Yang, Z.

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
[Crossref]

Zha, C.-J.

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Appl. Phys. B-Lasers O. (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B-Lasers O. 70(4), 587–591 (2000).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (1)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79(3), 1736–1740 (1996).
[Crossref]

J. King Saud Univ. - Sci. (1)

A. B. Adam, “Infrared and Raman studies on Snx–Sb5–Se95−x chalcogenide glasses,” J. King Saud Univ. - Sci. 21, 93–97 (2009).

J. Mater. Res. (1)

I. Haruvi-Busnach, J. Dror, and N. Croitoru, “Chalcogenide glasses Ge-Sn-Se, Ge-Se-Te, and Ge-Sn-Se-Te for infrared optical fibers,” J. Mater. Res. 5(06), 1215–1223 (1990).
[Crossref]

J. Non-Cryst. Solids (6)

K. Tanaka, “Two-photon optical absorption in amorphous materials,” J. Non-Cryst. Solids 338–340, 534–538 (2004).
[Crossref]

J. M. Mikrut and L. E. McNeil, “Fragmentation of the molecular cluster network of amorphous Ge1-xSnxSe2,” J. Non-Cryst. Solids 109(2-3), 237–246 (1989).
[Crossref]

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, “A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses,” J. Non-Cryst. Solids 354(29), 3468–3472 (2008).
[Crossref]

J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[Crossref]

K. Tanaka, “Layer structures in chalcogenide glasses,” J. Non-Cryst. Solids 103(1), 149–150 (1988).
[Crossref]

J. Phys. Chem. C (1)

W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge–Sb–Se Glasses,” J. Phys. Chem. C 117(32), 16571–16576 (2013).
[Crossref]

Nat. Photonics (2)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (3)

Phys. Chem. Chem. Phys. (1)

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. Kar, D. Furniss, and A. B. Seddon, “Correlating structure with non-linear optical properties in xAs40Se60·(1-x)As40S60 glasses,” Phys. Chem. Chem. Phys. 17(9), 6314–6327 (2015).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter 45(14), 8112–8115 (1992).
[Crossref] [PubMed]

Other (2)

G. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).

B. Luther-Davies, “Chalcogenide materials for nonlinear photonics in the near and middle infrared,” in 2014 OptoElectronics and Communication Conference, OECC 2014 and Australian Conference on Optical Fibre Technology, ACOFT 2014 (2014), pp. 401–403.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) near-infrared absorption spectra of the Ge-Sn-Se glasses, inset is enlarged spectra of the absorption edge; (b) relationship between mean coordination number (MCN) and optical band gap (Eopg) of the Ge-Sn-Se glasses.
Fig. 2
Fig. 2 (a and b) Closed-aperture Z-scans and (c and d) open aperture Z-scans of the glass sample (Sn5) at 3.0 and 3.5 μm, respectively.
Fig. 3
Fig. 3 Variation of nonlinear refractive index (n2) with the mean coordination number (MCN) of the Ge–Sn–Se ChGs at wavelengths of 3 and 3.5 μm.
Fig. 4
Fig. 4 Raman spectra of the Ge–Sn–Se ChGs. Inset shows the enlarged region between 140 and 160 cm−1 showing the presence of Sn–Sn homopolar bonds.
Fig. 5
Fig. 5 FTIR transmittance spectra of the Ge-Sn-Se glasses as well as the As2Se3 glass.

Metrics