Abstract

This study developed a novel one-step method for the synthesis of well-dispersed CZTSe nanoparticles from Cu, Zn, Sn, Se elemental powders using a solvent-thermal reflux technique. Polyetheramine was used as a solvent and chelating agent, which provided two NH2 bonding sites at the ends as well as long, continuous epoxy chains in the center, making it ideally suited to the formation of CZTSe for use in ink printing. X-ray diffraction (XRD) and optical Raman spectroscopy were used to identify structural and phase information; transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to confirm the morphology of the film as well as the shape and composition of the particles, and UV-Vis was used to characterize the band gap. We also investigated the composition and morphology of the CZTSe nanoparticles depending on different solvents polyetheramine and isophorondiamine. The polyetheramine-based process produced particles with far more Cu-poor and Zn-rich composition CZTSe phases, a smoother and closed packed morphology, and a more spherical crystal shape. In contrast, the isophorondiamine-based process produced nanoparticles with an irregular sheet-like shape. These results demonstrate that the solvent-thermal reflux method depends mainly on the structure of the chelating agent. The proposed technique is a low-cost and environmentally friendly solution-synthesis method applicable to the large-scale production of CZTSe for photovoltaic devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis of CIGS thin film by solvothermal route

Hsiang-Chen Wang, Chao-Chi Wang, Shih-Wei Feng, Li-His Chen, and Yen-Sheng Lin
Opt. Mater. Express 3(1) 54-66 (2013)

Tunable near-infrared localized surface plasmon resonances of heterostructured Cu1.94S-ZnS nanocrystals

Haihang Ye, Aiwei Tang, Yanbing Hou, Chunhe Yang, and Feng Teng
Opt. Mater. Express 4(2) 220-226 (2014)

Microstructural and optical characterizations of highly stable nanospheres of crystalline CdS via selective approach

A. L. Leal-Cruz, A. Vera-Marquina, D. Berman-Mendoza, C. VillaVelázquez-Mendoza, I. E. Zaldívar-Huerta, L. A. García-Delgado, A. García-Juárez, R. Gómez-Fuentes, and A. G. Rojas-Hernández
Opt. Mater. Express 4(1) 129-141 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18(S1), A73–A78 (2010).
    [Crossref]
  2. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).
  3. N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
    [Crossref]
  4. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
    [Crossref]
  5. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
    [Crossref]
  6. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
    [Crossref]
  7. V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
    [Crossref]
  8. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
    [Crossref]
  9. S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
    [Crossref]
  10. O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
    [Crossref]
  11. W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
    [Crossref]
  12. H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
    [Crossref]
  13. Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
    [Crossref]
  14. M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318(1), 1117–1120 (2011).
    [Crossref]
  15. M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
    [Crossref]
  16. L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
    [Crossref]
  17. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
    [Crossref]
  18. M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
    [Crossref]
  19. M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4 Thin Films by Spin-Coating and Selenization Process,” IEEE Nano 2011 Conference, 222–226 (2011).
  20. Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
    [Crossref] [PubMed]
  21. Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).
  22. H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
    [Crossref]
  23. W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
    [Crossref]
  24. P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
    [Crossref]
  25. H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films 519(21), 7508–7512 (2011).
    [Crossref]
  26. P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
    [Crossref]
  27. Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
    [Crossref]
  28. J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
    [Crossref]
  29. A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).
  30. B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
    [Crossref]
  31. K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
    [Crossref]

2014 (1)

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

2013 (9)

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[Crossref]

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

2012 (6)

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

2011 (7)

J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
[Crossref]

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films 519(21), 7508–7512 (2011).
[Crossref]

M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318(1), 1117–1120 (2011).
[Crossref]

V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
[Crossref]

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
[Crossref]

2010 (3)

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18(S1), A73–A78 (2010).
[Crossref]

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

2008 (1)

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

2005 (1)

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

2004 (1)

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).

2003 (1)

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
[Crossref]

Ahn, S.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Ahn, S. J.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Ahn, S. K.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Altosaar, M.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Auluck, S.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Bag, S.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

Balasundaraprabhu, R.

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

Bank, S. R.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

Bereznev, S.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

Bila, J.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Brugger, J.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Cao, M.

M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318(1), 1117–1120 (2011).
[Crossref]

Cao, Y.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Caspar, J. V.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Chang, J.

J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
[Crossref]

Chang, S. J.

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Chang, S. P.

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Chen, C. L.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Chen, L. J.

L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[Crossref]

Chen, Y. R.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Cheong, H.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Chiang, M. H.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Cho, A.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Choi, I. H.

V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
[Crossref]

Choia, D. S.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Choudhury, K. R.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Chuang, Y. J.

L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[Crossref]

Denny, M. S.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Du, Y. F.

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Eo, Y. J.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Fan, J. Q.

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Farneth, W. E.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Fu, Y. S.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Ganchev, P. M.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Geisz, J.

Goddard, L. L.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

Gokmen, T.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

Gonzalez, R. S.

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

Guha, S.

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Gunawan, O.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Guo, B.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Guo, Q.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Guo, T. F.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Guo, W.

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

Gwak, J.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Han, J. E.

J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
[Crossref]

Harada, T.

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Harris, J. S.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

He, J. J.

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Hsu, E. H.

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Huang, S. M.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Ikeda, S.

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Iljina, J.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Ionkin, A. S.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Jayakumar, S.

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

Johnson, L. K.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Jung, D. Y.

J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
[Crossref]

Jung, S.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Kamarudin, H.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Kannan, M. D.

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

Kaupmees, L.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Kim, J. H.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Kim, K.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Kityk, I. V.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Kolekar, S. S.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Kong, D. Y.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Kuo, C. C.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Kurtz, S.

Kyoraiseki, A.

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Lee, C. W.

V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
[Crossref]

Lee, P. Y.

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Li, A.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Li, J. J.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Li, P. W.

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Li, Z. Q.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Lin, W. T.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Lin, X. H.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Liu, W.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Liu, Y.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Lu, M.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Mak, C.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Malajovich, I.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Mathew, X.

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

Mathews, N. R.

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

Matsumura, M.

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Mawst, L. J.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
[Crossref]

Mellikov, E.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

Mere, A.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Mitzi, D. B.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Muthukumarasamy, N.

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

Nam, D.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Nouneh, K.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Otto, K.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

Pal, M.

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

Park, C. J.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Park, S. H.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Pawar, B. S.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Pawar, S. M.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Persson, C.

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films 519(21), 7508–7512 (2011).
[Crossref]

Pilvet, M.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

Raadik, T.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Radu, D.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Raudoja, J.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Reshak, A. H.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Rosenfeld, H. D.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Sabnis, V.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
[Crossref]

Saji, V. S.

V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
[Crossref]

Se, E. M.

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Sekkat, Z.

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

Septina, W.

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Shei, S. C.

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Shen, Y.

M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318(1), 1117–1120 (2011).
[Crossref]

Shih, C. H.

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Shin, K.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Shin, K. S.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Shin, S. W.

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Sun, Y.

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

Sun, Z.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Tansu, N.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
[Crossref]

Todorov, T. K.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Venkatachalam, M.

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

Volobujeva, O.

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

Wang, K.

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Wei, H.

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

Wiemer, M.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
[Crossref]

Wistey, M. A.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

Wu, S. X.

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Wu, W.

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

Wu, X.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Yang, Z.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

Yeh, J. Y.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
[Crossref]

Yoon, K. H.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

Yoona, K.

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

You, H.

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

Yuen, H.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
[Crossref]

Yuen, H. B.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

Yun, J. H.

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

Zhang, F.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

Zhang, H.

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Zhang, Y.

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

Zhao, H.

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films 519(21), 7508–7512 (2011).
[Crossref]

Zhou, W. H.

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Zhou, Y. L.

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Zhoun, W. H.

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Zhu, Y.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

Appl. Surf. Sci. (1)

B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” Appl. Surf. Sci. 257(5), 1786–1791 (2010).
[Crossref]

Bull. Korean Chem. Soc. (1)

J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene,” Bull. Korean Chem. Soc. 32(2), 434–438 (2011).
[Crossref]

Electrochim. Acta (1)

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436–442 (2013).
[Crossref]

Environ. Eng. Sci. (1)

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5(5), 7060 (2012).
[Crossref]

IEEE J. Sel. Top Quant. (2)

N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9(5), 1220–1227 (2003).
[Crossref]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11(5), 1089–1098 (2005).
[Crossref]

Int. J. Electrochem. Sci. (1)

A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations,” Int. J. Electrochem. Sci. 9, 955–974 (2014).

J. Am. Chem. Soc. (1)

Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc. 134(38), 15644–15647 (2012).
[Crossref] [PubMed]

J. Cryst. Growth (1)

M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318(1), 1117–1120 (2011).
[Crossref]

J. Mater. Chem. (1)

K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticle precursors,” J. Mater. Chem. 22(17), 8444–8448 (2012).
[Crossref]

J. Mater. Sci.-Mater. Electron. (1)

Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. Electron. 24(2), 529–535 (2013).

J. Phys.-Condens. Matter (1)

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Matter 16(31), S3277–S3318 (2004).

Mater. Lett. (3)

L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[Crossref]

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett. 64(13), 1424–1426 (2010).
[Crossref]

P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine,” Mater. Lett. 98, 71–73 (2013).
[Crossref]

Mater. Sci. Semicond. Process. (2)

Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mater. Sci. Semicond. Process. 15(2), 214–217 (2012).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804 (2011).
[Crossref]

Sol. Energy (1)

V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85(11), 2666–2678 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells 95(6), 1421–1436 (2011).
[Crossref]

Surf. Rev. Lett. (1)

H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19(04), 1250034 (2012).
[Crossref]

Thin Solid Films (8)

W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells,” Thin Solid Films 535, 39–43 (2013).
[Crossref]

P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M. Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films 519(21), 7394–7398 (2011).
[Crossref]

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films 519(21), 7508–7512 (2011).
[Crossref]

S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[Crossref]

O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48–51 (2013).
[Crossref]

M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516(20), 6848–6852 (2008).
[Crossref]

M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[Crossref]

M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[Crossref]

Other (1)

M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4 Thin Films by Spin-Coating and Selenization Process,” IEEE Nano 2011 Conference, 222–226 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD pattern of as-synthesized CZTSe nanoparticles.
Fig. 2
Fig. 2 Raman spectra of as-synthesized CZTSe nanoparticles.
Fig. 3
Fig. 3 (a) TEM image, (b) HRTEM image (c) SAED pattern of as-synthesized CZTSe nanocrystals.
Fig. 4
Fig. 4 (a) polyetheramine, (b) isophorondiamine (c) oleylamine of UV–Vis absorption spectrum of as-synthesized nano-particles: the inset presents (αhν)2 vs. energy.
Fig. 5
Fig. 5 (a) SEM top view of as-coated CZTSe particles synthesized in polyetheramine, (b) enlarged SEM micrograph of CZTSe particles synthesized in polyetheramine (c) enlarged SEM micrograph CZTSe film synthesized in IPDA (d) enlarged SEM micrograph of CZTSe grain particles synthesized in IPDA.
Fig. 6
Fig. 6 Various chelating solvents: (a) oleylamine (b) isophorondiamine (c) polyetheramine.

Metrics