Abstract

Anti-reflective surfaces structures (ARSS) have been successfully fabricated on fused silica windows, lenses and fibers, and spinel ceramics. The reflection loss for spinel was reduced from 7% per surface to 0.9%. For fused silica with ARSS, the reflection loss was reduced to 0.02% near 1 µm. Pulsed laser damage thresholds at 1.06 µm were measured and thresholds as high as 100 J/cm2 were obtained for fused silica windows of up to 10 cm in diameter with ARSS and 850 J/cm2 for silica fibers with ARSS on the end faces. Spinel samples with ARSS showed damage thresholds more than two times higher than that of spinel with traditional AR coatings.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Review of antireflective surface structures on laser optics and windows

Lynda E. Busse, Jesse A. Frantz, L. Brandon Shaw, Ishwar D. Aggarwal, and Jasbinder S. Sanghera
Appl. Opt. 54(31) F303-F310 (2015)

Angle-of-incidence performance of random anti-reflection structures on curved surfaces

C. D. Taylor, L. E. Busse, J. Frantz, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous
Appl. Opt. 55(9) 2203-2213 (2016)

High optical transparency and good adhesion of diamond films deposited on fused silica windows with a surface-wave sustained plasma

V. T.-Airoldi, C. F. M. Borges, M. Moisan, and D. Guay
Appl. Opt. 36(19) 4400-4402 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. 7(8), 1529 (1990).
    [Crossref]
  2. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993).
    [Crossref] [PubMed]
  3. R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).
  4. D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
    [Crossref]
  5. D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
    [Crossref]
  6. S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
    [Crossref]
  7. D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
    [Crossref]
  8. T. Lohmueller, R. Brunner, and J. P. Spatz, “Improved properties of optical surfaces by following the example of the ‘moth eye’,” Biomimetics Learning From Nature, ed. by A. Mukherjee (Intech, 2010), Chap. 22.
  9. D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
    [Crossref]
  10. G. Villalobos, S. Bayya, W. Kim, J. Sanghera, B. Sadowski, R. Miklos, C. Florea, and I. Aggarwal, (2012) “Polished Spinel Directly from the Hot Press,” in Advances in Ceramic Armor VIII (John Wiley & Sons, Inc. 2012).
  11. J. P. Nole, “Novel micro-structures with high laser-induced-damage-thresholds,” SPIE Newsroom (2008).
    [Crossref]

2013 (1)

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

2011 (1)

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

2007 (1)

D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

2002 (1)

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

1999 (1)

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

1993 (1)

1990 (1)

J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. 7(8), 1529 (1990).
[Crossref]

Aggarwal, I.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Bayya, S.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Busse, L.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Chin, G.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Cowan, J. J.

J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. 7(8), 1529 (1990).
[Crossref]

Damiani, B. M.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Docherty, A.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Florea, C.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Gentilman, R. L.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

Hartnett, T. M.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

Hobbs, D. S.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

Hunt, M.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Kelsey, A. F.

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

Kim, W.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Leclerc, M. A.

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

McLeod, B. D.

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

Menyuk, C. R.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Miklos, F.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Morris, G. M.

Narayanan, S.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Raguin, D. H.

Riccobono, J.

D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

Rohatgi, A.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Ruby, D. S.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Sabatino, E.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

Sadowski, B.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Sanghera, J.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Shaw, B.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Villalobos, G.

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

Weiblen, R. J.

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

Zaidi, S. H.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. 7(8), 1529 (1990).
[Crossref]

Proc. SPIE (4)

D. S. Hobbs, B. D. MacLeod, and J. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” Proc. SPIE 8016, 801628 (2011).
[Crossref]

S. Bayya, G. Villalobos, W. Kim, J. Sanghera, G. Chin, M. Hunt, B. Sadowski, F. Miklos, and I. Aggarwal, “Recent developments in transparent spinel ceramic and composite windows,” Proc. SPIE 8837, 88370V (2013).
[Crossref]

D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, and E. Sabatino, “Automated interference lithography systems for generation of sub-micron feature size patterns,” Proc. SPIE 3879, 124–135 (1999).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 133–137 (2002).
[Crossref]

Other (4)

G. Villalobos, S. Bayya, W. Kim, J. Sanghera, B. Sadowski, R. Miklos, C. Florea, and I. Aggarwal, (2012) “Polished Spinel Directly from the Hot Press,” in Advances in Ceramic Armor VIII (John Wiley & Sons, Inc. 2012).

J. P. Nole, “Novel micro-structures with high laser-induced-damage-thresholds,” SPIE Newsroom (2008).
[Crossref]

R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “Optimizing motheye antireflective structures for maximum coupling through As2S3 optical fibers,” IEEE Photonics Conference, 824–825 (2012).

T. Lohmueller, R. Brunner, and J. P. Spatz, “Improved properties of optical surfaces by following the example of the ‘moth eye’,” Biomimetics Learning From Nature, ed. by A. Mukherjee (Intech, 2010), Chap. 22.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Transmission data for fused silica samples with ARSS treatment: (a) bulk window transmission, (b) calculated surface transmission and (c) transmission for one side AR coated.
Fig. 2
Fig. 2 SEM images of a cleaved piece of fused silica with SWS: (a) observation with a 45° tilt and (b) observation at 90° tilt with zoomed-in image, with the scale marker displayed.
Fig. 3
Fig. 3 SEM cross-section images for rARSS fused silica showing increased detail from (a) to (b). The marker displayed in (b) is 1 µm.
Fig. 4
Fig. 4 Reflection loss from two of the best performing rARSS fused silica windows.
Fig. 5
Fig. 5 Laser damage results at 1.06 µm for fused silica with and without traditional AR coating (ARC) and with ARSS.
Fig. 6
Fig. 6 (a) SEM image of irradiated area on silica sample with ARSS after testing at 100 J/cm2 incident fluence and (b) confocal microscope image showing smoothing of the surface at that location.
Fig. 7
Fig. 7 Surface scattering data (BRDF) for fused silica windows with and without AR coating and ARSS.
Fig. 8
Fig. 8 Transmission measured through a 10 cm diameter silica window before and after random AR surface structures processing (both sides)
Fig. 9
Fig. 9 Fused silica 5 mm diameter hemispherical silica lenses with and without rARSS treatment.
Fig. 10
Fig. 10 Single mode fibers with ends shown as mounted in v-groove assembly.
Fig. 11
Fig. 11 SEM photo of the end faces of etched silica fibers in v-groove assembly.
Fig. 12
Fig. 12 Close inspection of etched SMF28 surface in the core and clad areas.
Fig. 13
Fig. 13 (a) Transmission data for spinel window with one side processed with moth eye ARSS and (b) confocal microscope image of the pattern.
Fig. 14
Fig. 14 Summary of laser damage threshold data obtained for spinel samples: uncoated, AR coated (ARC) and surface with moth eye (ARSS).

Tables (3)

Tables Icon

Table 1 Laser damage data for fused silica at 1.06 µm.

Tables Icon

Table 2 Back-scattering (BRDF) values and calculated exposure to the eye in mW at 1.06 µm, for fused silica windows assuming a 100 KW laser.

Tables Icon

Table 3 Laser damage threshold values at 1.06 µm for fused silica SMF28 optical fibers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dP= P inc ×BRDF(i,θ,λ)×( π d 2 /4 L 2 )×cosθ
dW=( π d 2 /4 L 2 )

Metrics