Abstract

A sol-gel antireflective (AR) coating with an ordered structure has been studied recently for its promising application in high power laser system. However, it is not clear how good the coating is when compared with the traditional sol-gel ones. To address this issue, a comparative study of the laser-induced damage thresholds (LIDTs) of three sol-gel silica coatings was conducted with 1064 nm laser irradiation. Ordered mesoporous, amorphous porous and dense coatings were prepared with acid or base catalysts, and were compared in terms of the skeleton and pore structures, the absorptions, the LIDTs, the damage morphologies and so on. It was found that the former two coatings were comparably strong in resisting laser damage, and that high porosity was the most important factor affecting the LIDT. Besides, the ordered mesoporous coating with a fiber-like skeleton led to the minimum damage of the substrate in all the samples.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning

Xiaodong Wang, Guangming Wu, Bin Zhou, and Jun Shen
Opt. Express 20(22) 24482-24487 (2012)

Durable solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion

Yao Xu, Lei Zhang, Dong Wu, Yu Han Sun, Zu Xing Huang, Xiao Dong Jiang, Xiao Feng Wei, Zhi Hong Li, Bao Zhong Dong, and Zhong Hua Wu
J. Opt. Soc. Am. B 22(4) 905-912 (2005)

Sculptured anti-reflection coatings for high power lasers

Tomas Tolenis, Lina Grinevičiūtė, Rytis Buzelis, Linas Smalakys, Egidijus Pupka, Simas Melnikas, Algirdas Selskis, Ramutis Drazdys, and Andrius Melninkaitis
Opt. Mater. Express 7(4) 1249-1258 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  2. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25(9), 1481–1483 (1986).
    [Crossref] [PubMed]
  3. I. M. Thomas, “Effect of binders on the damage threshold and refractive index of coatings prepared from colloidal suspensions,” Proc. SPIE 1848, 281–289 (1993).
    [Crossref]
  4. I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
    [Crossref]
  5. P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
    [Crossref]
  6. M. R. Kozlowski and I. M. Thomas, “Future trends in optical coatings for high-power laser applications,” Proc. SPIE 2262, 54–59 (1994).
    [Crossref]
  7. I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
    [Crossref]
  8. J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
    [Crossref]
  9. X. G. Li and J. Shen, “The stability of sol-gel silica coatings in vacuum with organic contaminants,” J. Sol-Gel Sci. Technol. 59(3), 539–545 (2011).
    [Crossref]
  10. F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
    [Crossref]
  11. X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
    [Crossref]
  12. X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
    [Crossref]
  13. H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).
  14. L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
    [Crossref] [PubMed]
  15. J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
    [Crossref] [PubMed]
  16. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990).
  17. X. G. Li and J. Shen, “A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method,” Thin Solid Films 519(19), 6236–6240 (2011).
    [Crossref]
  18. W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
    [Crossref] [PubMed]
  19. W. Shimizu and Y. Murakami, “Microporous silica thin films with low refractive indices and high Young’s modulus,” ACS Appl. Mater. Interfaces 2(11), 3128–3133 (2010).
    [Crossref] [PubMed]
  20. W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
    [Crossref] [PubMed]
  21. B. Max and W. Emil, Principles of Optics (Pergamon, 1983).
  22. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [Crossref]
  23. T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
    [Crossref]
  24. Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
    [Crossref]
  25. X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
    [Crossref] [PubMed]
  26. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]

2014 (2)

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
[Crossref] [PubMed]

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

2011 (3)

X. G. Li and J. Shen, “The stability of sol-gel silica coatings in vacuum with organic contaminants,” J. Sol-Gel Sci. Technol. 59(3), 539–545 (2011).
[Crossref]

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

X. G. Li and J. Shen, “A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method,” Thin Solid Films 519(19), 6236–6240 (2011).
[Crossref]

2010 (2)

W. Shimizu and Y. Murakami, “Microporous silica thin films with low refractive indices and high Young’s modulus,” ACS Appl. Mater. Interfaces 2(11), 3128–3133 (2010).
[Crossref] [PubMed]

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

2007 (1)

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

2006 (1)

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

2004 (1)

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

1999 (1)

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

1998 (2)

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

1994 (3)

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[Crossref]

P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
[Crossref]

M. R. Kozlowski and I. M. Thomas, “Future trends in optical coatings for high-power laser applications,” Proc. SPIE 2262, 54–59 (1994).
[Crossref]

1993 (1)

I. M. Thomas, “Effect of binders on the damage threshold and refractive index of coatings prepared from colloidal suspensions,” Proc. SPIE 1848, 281–289 (1993).
[Crossref]

1986 (1)

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Akamatsu, S.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Belleville, P. F.

P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
[Crossref]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Burnham, A. K.

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Chi, F. T.

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

Deng, Y. H.

W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
[Crossref] [PubMed]

Ding, R. M.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Ertel, J. R.

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

Fan, W. H.

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

Fengrui, W.

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Floch, H. G.

P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
[Crossref]

Frieders, S. C.

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

Green, K.

Gross, M.

X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
[Crossref] [PubMed]

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

Hongjie, L.

Horibe, H.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Ji, Y. Q.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Jiang, B.

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Jin, H.

Jitsuno, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Joo, W.

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Kamimura, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Kim, J. K.

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

M. R. Kozlowski and I. M. Thomas, “Future trends in optical coatings for high-power laser applications,” Proc. SPIE 2262, 54–59 (1994).
[Crossref]

Laixi, S.

Li, W.

W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
[Crossref] [PubMed]

Li, X. G.

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
[Crossref] [PubMed]

X. G. Li and J. Shen, “The stability of sol-gel silica coatings in vacuum with organic contaminants,” J. Sol-Gel Sci. Technol. 59(3), 539–545 (2011).
[Crossref]

X. G. Li and J. Shen, “A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method,” Thin Solid Films 519(19), 6236–6240 (2011).
[Crossref]

Liu, H. S.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Liu, T.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Lv, H. B.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Ma, B.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Motokoshi, S.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Murakami, Y.

W. Shimizu and Y. Murakami, “Microporous silica thin films with low refractive indices and high Young’s modulus,” ACS Appl. Mater. Interfaces 2(11), 3128–3133 (2010).
[Crossref] [PubMed]

Nichols, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Okamato, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Oreb, B.

X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
[Crossref] [PubMed]

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

Park, M. S.

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Sakamoto, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Shen, J.

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

X. G. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett. 37(12), 2364–2366 (2012).
[Crossref] [PubMed]

X. G. Li and J. Shen, “The stability of sol-gel silica coatings in vacuum with organic contaminants,” J. Sol-Gel Sci. Technol. 59(3), 539–545 (2011).
[Crossref]

X. G. Li and J. Shen, “A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method,” Thin Solid Films 519(19), 6236–6240 (2011).
[Crossref]

Shen, Z. X.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Shiba, H.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Shimizu, W.

W. Shimizu and Y. Murakami, “Microporous silica thin films with low refractive indices and high Young’s modulus,” ACS Appl. Mater. Interfaces 2(11), 3128–3133 (2010).
[Crossref] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Sun, J. H.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

Sun, Y.

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Thomas, I. M.

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[Crossref]

M. R. Kozlowski and I. M. Thomas, “Future trends in optical coatings for high-power laser applications,” Proc. SPIE 2262, 54–59 (1994).
[Crossref]

I. M. Thomas, “Effect of binders on the damage threshold and refractive index of coatings prepared from colloidal suspensions,” Proc. SPIE 1848, 281–289 (1993).
[Crossref]

I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25(9), 1481–1483 (1986).
[Crossref] [PubMed]

Tian, H.

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

Wang, C. C.

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

Wang, Z. S.

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

Wanguo, Z.

Wu, D.

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

Wu, Z. H.

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

Xiao, B.

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Xiaodong, J.

Xiaoyan, Z.

Xin, Y.

Xinda, Z.

Xu, Y.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

Yan, H. W.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

Yan, L. H.

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Ye, H. P.

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Yoshida, K.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Yuan, X. D.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

Yue, Q.

W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
[Crossref] [PubMed]

Zhan, S.

Zhang, L.

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

Zhang, Q. H.

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

Zhang, X. X.

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

Zhao, D. Y.

W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
[Crossref] [PubMed]

Zou, L. P.

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

W. Shimizu and Y. Murakami, “Microporous silica thin films with low refractive indices and high Young’s modulus,” ACS Appl. Mater. Interfaces 2(11), 3128–3133 (2010).
[Crossref] [PubMed]

Acta Phys. Chim. Sin. (1)

H. Tian, L. Zhang, Y. Xu, D. Wu, Z. H. Wu, H. B. Lv, and X. D. Yuan, “Comparison of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP,” Acta Phys. Chim. Sin. 28(5), 1197–1205 (2012).

Adv. Mater. (1)

W. Li, Q. Yue, Y. H. Deng, and D. Y. Zhao, “Ordered mesoporous materials based on interfacial assembly and engineering,” Adv. Mater. 25(37), 5129–5152 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Phys. Chem. C (2)

X. G. Li, M. Gross, B. Oreb, and J. Shen, “Increased laser-damage resistance of sol-gel silica coating by structure modification,” J. Phys. Chem. C 116(34), 18367–18371 (2012).
[Crossref]

X. X. Zhang, H. P. Ye, B. Xiao, L. H. Yan, H. B. Lv, and B. Jiang, “Sol-gel preparation of PDMS/SiO2 hybrid antireflective coatings with controlled thickness and durable antireflective performance,” J. Phys. Chem. C 114(47), 19979–19983 (2010).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

X. G. Li and J. Shen, “The stability of sol-gel silica coatings in vacuum with organic contaminants,” J. Sol-Gel Sci. Technol. 59(3), 539–545 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1229–L1231 (2004).
[Crossref]

Langmuir (2)

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

L. P. Zou, X. G. Li, Q. H. Zhang, and J. Shen, “An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method,” Langmuir 30(34), 10481–10486 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

J. H. Sun, Q. H. Zhang, R. M. Ding, H. B. Lv, H. W. Yan, X. D. Yuan, and Y. Xu, “Contamination-resistant silica antireflective coating with closed ordered mesopores,” Phys. Chem. Chem. Phys. 16(31), 16684–16693 (2014).
[Crossref] [PubMed]

Proc. SPIE (7)

I. M. Thomas, “Effect of binders on the damage threshold and refractive index of coatings prepared from colloidal suspensions,” Proc. SPIE 1848, 281–289 (1993).
[Crossref]

I. M. Thomas, “Sol-gel coatings for high power laser optics-past, present and future,” Proc. SPIE 2114, 232–243 (1994).
[Crossref]

P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994).
[Crossref]

M. R. Kozlowski and I. M. Thomas, “Future trends in optical coatings for high-power laser applications,” Proc. SPIE 2262, 54–59 (1994).
[Crossref]

I. M. Thomas, A. K. Burnham, J. R. Ertel, and S. C. Frieders, “Method for reducing the effect of environmental contamination of Sol-gel optical coatings,” Proc. SPIE 3492, 220–229 (1999).
[Crossref]

Z. X. Shen, B. Ma, Z. S. Wang, Y. Q. Ji, T. Liu, and H. S. Liu, “Fabrication of supersmooth surfaces with low subsurface damage,” Proc. SPIE 6722, W7223 (2007).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Stud. Surf. Sci. Catal. (1)

J. H. Sun, W. H. Fan, D. Wu, and Y. Sun, “Structure control of SiO2 sol-gels via addition of PEG,” Stud. Surf. Sci. Catal. 118, 617–624 (1998).
[Crossref]

Thin Solid Films (2)

F. T. Chi, L. H. Yan, H. B. Lv, C. C. Wang, and X. D. Yuan, “Effect of polyvinyl butyral on the microstructure and laser damage threshold of antireflective silica films,” Thin Solid Films 519(8), 2483–2487 (2011).
[Crossref]

X. G. Li and J. Shen, “A scratch-resistant and hydrophobic broadband antireflective coating by sol-gel method,” Thin Solid Films 519(19), 6236–6240 (2011).
[Crossref]

Other (2)

B. Max and W. Emil, Principles of Optics (Pergamon, 1983).

C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Flow charts of preparations of the base-SiO2 (a), the acid-SiO2 (b), and the F127-SiO2 (c) coatings.
Fig. 2
Fig. 2 TEM image of the F127-SiO2 coating (a) and SEM images of the base-SiO2 (b) and the acid-SiO2 (c) coatings.
Fig. 3
Fig. 3 Damage morphologies of the bare substrate (a) and the three coated samples: F127-SiO2 (b), base-SiO2 (c), and acid-SiO2 (d) coatings.

Tables (1)

Tables Icon

Table 1 Properties of the bare substrate and the three coatings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( n f 2 1 ) / ( n f 2 + 2 ) = ( 1 V f ) ( n s 2 1 ) / ( n s 2 + 2 )

Metrics