Abstract

Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters and dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows vividly that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas
Opt. Express 21(4) 4250-4262 (2013)

Polarization switching between parallel and orthogonal collective resonances in arrays of metal nanoparticles

Alina Muravitskaya, Artur Movsesyan, Sergei Kostcheev, and Pierre-Michel Adam
J. Opt. Soc. Am. B 36(7) E65-E70 (2019)

Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size

V. I. Zakomirnyi, A. E. Ershov, V. S. Gerasimov, S. V. Karpov, H. Ågren, and I. L. Rasskazov
Opt. Lett. 44(23) 5743-5746 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
    [Crossref]
  4. I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express19(7), 5888–5894 (2011).
    [Crossref] [PubMed]
  5. Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
    [Crossref]
  6. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [Crossref]
  7. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  8. P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [Crossref] [PubMed]
  10. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
    [Crossref] [PubMed]
  11. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
    [Crossref]
  12. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
    [Crossref] [PubMed]
  13. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces - dipolar interactions among particles of sizes exceeding the rayleigh limit,” J. Opt. Soc. Am. B2(6), 931–949 (1985).
    [Crossref]
  14. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
    [Crossref] [PubMed]
  15. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  16. V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38(7), L115–L121 (2005).
    [Crossref]
  17. G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
    [Crossref]
  18. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
    [Crossref] [PubMed]
  19. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
    [Crossref] [PubMed]
  20. V. A. Markel, “Comment on “Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes” [J. Chem. Phys. 120, 10871 (2004)],” J. Chem. Phys.122(9), 097101, author reply 097102 (2005).
    [Crossref] [PubMed]
  21. S. Zou, and G. C. Schatz, “Response to “Comment on ‘silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ” [j. Chem. Phys.120, 10871 (2004)],” J. Chem. Phys 122, - (2005).
  22. F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
    [Crossref]
  23. S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
  24. S. R. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express21(22), 27411–27421 (2013).
    [Crossref] [PubMed]
  25. J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett.37(1), 79–81 (2012).
    [Crossref] [PubMed]
  26. A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
    [Crossref] [PubMed]
  27. A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express20(25), 27941–27952 (2012).
    [Crossref] [PubMed]
  28. B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
    [Crossref]
  29. X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, “Excitation of confined modes on particle arrays,” Opt. Express21(5), 5636–5642 (2013).
    [Crossref] [PubMed]
  30. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
    [Crossref]
  31. P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
    [Crossref]
  32. Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009).
    [Crossref] [PubMed]
  33. S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
    [Crossref]
  34. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express17(4), 2334–2340 (2009).
    [Crossref] [PubMed]
  35. L. Lin and Y. Yi, “Lattice plasmon resonance in core-shell SiO₂/Au nanocylinder arrays,” Opt. Lett.39(16), 4823–4826 (2014).
    [Crossref] [PubMed]
  36. A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
    [Crossref]
  37. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
    [Crossref] [PubMed]
  38. L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
    [Crossref]
  39. Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
    [Crossref]
  40. Lumerical Solutions” http://www.Lumerical.Com/ .”
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [Crossref]
  42. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
    [Crossref] [PubMed]
  43. J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
    [Crossref] [PubMed]
  44. T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
    [Crossref] [PubMed]
  45. M. A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley Reading, 1975).
  46. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
    [Crossref]
  47. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
    [Crossref] [PubMed]
  48. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
    [Crossref]
  49. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [Crossref]
  50. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
    [Crossref]
  51. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
    [Crossref]
  52. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  53. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
    [Crossref] [PubMed]
  54. S. Mokkapati and K. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012).
    [Crossref]
  55. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
    [Crossref] [PubMed]
  56. Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
    [Crossref] [PubMed]
  57. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
    [Crossref] [PubMed]
  58. A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
    [Crossref]
  59. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011).
    [Crossref] [PubMed]
  60. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
    [Crossref] [PubMed]
  61. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
    [Crossref] [PubMed]

2014 (5)

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
[Crossref]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

L. Lin and Y. Yi, “Lattice plasmon resonance in core-shell SiO₂/Au nanocylinder arrays,” Opt. Lett.39(16), 4823–4826 (2014).
[Crossref] [PubMed]

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

2013 (5)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, “Excitation of confined modes on particle arrays,” Opt. Express21(5), 5636–5642 (2013).
[Crossref] [PubMed]

S. R. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express21(22), 27411–27421 (2013).
[Crossref] [PubMed]

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

2012 (6)

J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett.37(1), 79–81 (2012).
[Crossref] [PubMed]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express20(25), 27941–27952 (2012).
[Crossref] [PubMed]

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

S. Mokkapati and K. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012).
[Crossref]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

2011 (11)

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[Crossref] [PubMed]

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
[Crossref]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[Crossref] [PubMed]

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express19(7), 5888–5894 (2011).
[Crossref] [PubMed]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
[Crossref] [PubMed]

2010 (4)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

2009 (6)

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[Crossref] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express17(4), 2334–2340 (2009).
[Crossref] [PubMed]

Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009).
[Crossref] [PubMed]

2008 (3)

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[Crossref] [PubMed]

2007 (5)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[Crossref]

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[Crossref]

2005 (3)

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38(7), L115–L121 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (3)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

2003 (3)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[Crossref] [PubMed]

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[Crossref]

Abass, A.

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

Agarwal, H.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

Ahn, W.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
[Crossref]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[Crossref] [PubMed]

Beermann, J.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Bekshaev, A.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
[Crossref]

Bendaña, X. M.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[Crossref] [PubMed]

Blake, P.

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

Bliokh, K. Y.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
[Crossref]

Boltasseva, A.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Borghs, G.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Boriskina, S.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

Boriskina, S. V.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Catchpole, K.

S. Mokkapati and K. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, C.-Y.

Chen, T.

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Christ, A.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

Cushman, B.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Dal Negro, L.

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Dallaporta, H.

De Abajo, F. G.

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[Crossref]

De Geyter, B.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Dimakis, E.

DiMaria, J.

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Ekinci, Y.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[Crossref]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[Crossref]

Eskelinen, A.-P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Evlyukhin, A. B.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Feizpour, A.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Forcherio, G. T.

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

Gao, H.

García de Abajo, F. J.

Giannini, V.

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Gippius, N.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

Gomes, R.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Gómez Rivas, J.

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, “Excitation of confined modes on particle arrays,” Opt. Express21(5), 5636–5642 (2013).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Gray, S. K.

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Hassinen, A.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hens, Z.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Henson, J.

Henzie, J.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Hong, Y.

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

Huang, W. Y.

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[Crossref]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Janssen, O. T.

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

Jiang, Y.-W.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Kabashin, A. V.

Khanadeyev, V. A.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Kim, D.-H.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Kim, M.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Kühne, S.

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lambert, K.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Lee, J.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Lee, M. H.

Lee, S.-C.

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
[Crossref]

Liao, P. F.

Lin, L.

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liphardt, J.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

Liz-Marzán, L. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Lozano, G.

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, “Excitation of confined modes on particle arrays,” Opt. Express21(5), 5636–5642 (2013).
[Crossref] [PubMed]

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Mackowski, D. W.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Maes, B.

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

Maier, S.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Maksymov, I. S.

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38(7), L115–L121 (2005).
[Crossref]

V. A. Markel, “Comment on “Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes” [J. Chem. Phys. 120, 10871 (2004)],” J. Chem. Phys.122(9), 097101, author reply 097102 (2005).
[Crossref] [PubMed]

Martikainen, J.-P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Martin, O.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

Martin, O. J.

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

McEnery, K.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

McMahon, J. M.

Meier, M.

Miroshnichenko, A. E.

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

Moerland, R. J.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Mokkapati, S.

S. Mokkapati and K. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012).
[Crossref]

Moustakas, T. D.

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Nikitin, A. G.

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[Crossref]

Odom, T. W.

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

Özdemir, S.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Paiella, R.

Pirruccio, G.

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Pourmand, M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

Premasiri, R. W.

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

Premasiri, W. R.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

Qiu, Y.

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

Radko, I. P.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Reinhard, B. M.

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[Crossref] [PubMed]

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
[Crossref] [PubMed]

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

Rekola, H. T.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Rivas, J. G.

S. R. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express21(22), 27411–27421 (2013).
[Crossref] [PubMed]

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[Crossref]

Rodriguez, S.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

Rodriguez, S. R.

Romo-Herrera, J. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Roper, D. K.

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Schatz, G. C.

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express17(4), 2334–2340 (2009).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Siu, M.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

Solak, H.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

Søndergaard, T.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Soskin, M.

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[Crossref] [PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

Tame, M.

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Thubagere, A.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Tikhodeev, S.

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

Törmä, P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Tsai, M.-W.

Tzuang, L. D.

Väkeväinen, A. I.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[Crossref]

Van Thourhout, D.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Vecchi, G.

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[Crossref] [PubMed]

Verschuuren, M.

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Volkov, V. S.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Wang, J.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

Wokaun, A.

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Wu, Y.-T.

Yan, B.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[Crossref] [PubMed]

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Yang, L.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

Ye, J.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

Ye, Y.-H.

Yi, Y.

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

Ziegler, L. D.

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[Crossref] [PubMed]

ACS Nano (1)

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano3(5), 1190–1202 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics1(3), 228–234 (2014).
[Crossref]

Adv. Funct. Mater. (2)

L. Yang, B. Yan, R. W. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[Crossref]

Y. Hong, Y. Qiu, T. Chen, and B. M. Reinhard, “Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonic-plasmonic resonances,” Adv. Funct. Mater.24(6), 739–746 (2014).
[Crossref]

Adv. Mater. (1)

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem.83(6), 2243–2249 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[Crossref]

S. Rodriguez, G. Lozano, M. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100(11), 111103 (2012).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (2)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing,” J Phys Chem C Nanomater Interfaces115(50), 24437–24453 (2011).
[Crossref] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≤7) for array applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[Crossref] [PubMed]

J Phys Chem Lett (1)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J Phys Chem Lett4(13), 2147–2152 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Mokkapati and K. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys.112(10), 101101 (2012).
[Crossref]

J. Chem. Phys. (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[Crossref] [PubMed]

J. Nanophotonics (1)

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics8(1), 083084 (2014).
[Crossref]

J. Opt. (1)

A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38(7), L115–L121 (2005).
[Crossref]

Laser Photon. Rev. (1)

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev.3(6), 575–590 (2009).
[Crossref]

Nano Lett. (8)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007).
[Crossref] [PubMed]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett.14(4), 1721–1727 (2014).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett.12(1), 219–227 (2012).
[Crossref] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[Crossref]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[Crossref] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[Crossref]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[Crossref]

Nanoscale (2)

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale3(4), 1304–1315 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[Crossref]

Nat. Phys. (1)

M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys.9(6), 329–340 (2013).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[Crossref]

Opt. Express (7)

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011).
[Crossref] [PubMed]

I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express19(7), 5888–5894 (2011).
[Crossref] [PubMed]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express20(25), 27941–27952 (2012).
[Crossref] [PubMed]

S. R. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express21(22), 27411–27421 (2013).
[Crossref] [PubMed]

Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009).
[Crossref] [PubMed]

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, “Excitation of confined modes on particle arrays,” Opt. Express21(5), 5636–5642 (2013).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express17(4), 2334–2340 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (4)

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B77(3), 035440 (2008).
[Crossref]

A. Christ, Y. Ekinci, H. Solak, N. Gippius, S. Tikhodeev, and O. Martin, “Controlling the fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).

Rev. Mod. Phys. (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[Crossref]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Other (5)

M. A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley Reading, 1975).

Lumerical Solutions” http://www.Lumerical.Com/ .”

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

V. A. Markel, “Comment on “Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes” [J. Chem. Phys. 120, 10871 (2004)],” J. Chem. Phys.122(9), 097101, author reply 097102 (2005).
[Crossref] [PubMed]

S. Zou, and G. C. Schatz, “Response to “Comment on ‘silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ” [j. Chem. Phys.120, 10871 (2004)],” J. Chem. Phys 122, - (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic illustration of amixed metal-dielectric NP hybrid array. (b) SEM of fabricated array with Λ = 1100nm. Scale bar = 500nm.
Fig. 2
Fig. 2 Extinction (a, c, e) and E-field intensity enhancement (b, d, f) as function of the lattice vector k in gold NP square monomer (a, b), square dimer (c, d), and centered square dimer (e, f) arrays. Spectra of isolated monomers and dimers are added as separate column next to the respective dispersion diagram in (a-d). The isolated monomer spectra in (a) and (c) were scaled by a factor of 1000 and 500, respectively. The extinction was calculated as (1-T)A, where T is the transmission and A is the unit cell area (m2). The E-field intensity for monomers is evaluated 2 nm away from the NP surface along the E-field polarization axis. For the dimer it is evaluated in the center of the gap. The diffraction edges of the (0, 1), (1, 1), (0, 2), (1, 2) modes are included as red, yellow, white, and green lines, respectively. The unit cell geometries of corresponding arrays are shown on the right side of each row.
Fig. 3
Fig. 3 Electric field intensity enhancement map for the square array (a) and centered square array (b) of gold NP dimers. Normalized Poynting vectors are included as cyan arrows. All maps are evaluated with Λ = 623nm (k = 1.01 × 107 rad/m) and at an energy of 1.83eV.
Fig. 4
Fig. 4 Extinction (a, c) and E-field intensity enhancement (b, d) spectra of square arrays of dielectric (nr = 2.40) NPs (a, b) and metal-dielectric (c, d) hybrid array comprising both gold NP dimers and dielectric NPs. In the hybrid structure the E-field intensity was evaluated in the center gold NP dimer gap. In the dielectric array, the E-field intensity was evaluated in the center of the unit cell at the same z-coordinate as in the hybrid array. The diffraction edges of the (0, 1), (1, 1), (0, 2), (1, 2) modes are included as red, yellow, white, and green lines, respectively. The unit cell geometries of corresponding arrays are shown on the right side of each row.
Fig. 5
Fig. 5 (a) Electric field intensity enhancement map and Poynting vector map for hybrid array. (b) Cumulative distribution plots of the E-field intensity in one unit cell for 3 types of array. All Figs. are evaluated with Λ = 623nm (k = 1.01 × 107 rad/m) and energy = 1.83eV.
Fig. 6
Fig. 6 Electric field intensity enhancement map for the gold dimer square array evaluated with Λ = 623nm (k = 1.01 × 107 rad/m) at energy = (a)2.25eV, (b) 2.07eV, (c) 1.91eV, (d) 1.77eV, (e) 1.65eV, (e) 1.55eV.
Fig. 7
Fig. 7 Schematic real space of (a) square lattice and (b) rhombic lattice.
Fig. 8
Fig. 8 Electric field intensity enhancement map for the hybrid array evaluated with Λ = 623nm (k = 1.01 × 107 rad/m) at energy = (a)2.25eV, (b) 2.07eV, (c) 1.91eV, (d) 1.77eV, (e) 1.65eV, (e) 1.55eV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k ' 2 = n 2 ( 2 π Λ ) + m 2 ( 2 π Λ )

Metrics