Abstract

Nanostructured TiO2 films with double-layered structure are prepared by a facile one-step soaking method. We have investigated the morphology of nanostructured TiO2 films by the reaction time of the soaking method, which has an effect on the thickness and layered structure of the TiO2 films. The TiO2 films prepared by this method have a unique double-layered structure, which is composed of a dense TiO2 bottom layer and TiO2 particulates on the bottom layer. By manipulating the reaction time of the soaking method, control of TiO2 particulate formation on the surface of the dense TiO2 bottom layer is possible. The double-layered structure of nanostructured TiO2 films is effective for achieving sufficient adsorption of Sb2S3 sensitizer and light scattering effect of photoelectrodes for inorganic sensitized solar cells, which induces the enhancement of short circuit current of solar cell devices. Our solar cell device, using a double-layered TiO2 film with particulate structure as a photoelectrode, exhibited JSC, VOC, FF, and η values of 12.94 mA/cm2, 498 mV, 57.0%, and 3.67%, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved performance of dye-sensitized solar cells using dual-function TiO2 nanowire photoelectrode

Zico Alaia Akbar, Ji Hye Oh, Wisnu Tantyo Hadmojo, Su Ji Yang, Young Rag Do, and Sung-Yeong Jang
Opt. Express 23(19) A1280-A1287 (2015)

Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell

S. Shah, I.M. Noor, J. Pitawala, I. Albinson, T. M. W. J. Bandara, B. -E. Mellander, and A. K. Arof
Opt. Mater. Express 7(6) 2069-2083 (2017)

Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
    [Crossref]
  2. H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
    [Crossref]
  3. L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
    [Crossref]
  4. D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(S2Suppl 2), A168–A176 (2012).
    [Crossref] [PubMed]
  5. S. H. Lee, H. Jin, D. Y. Kim, K. Song, S. H. Oh, S. Kim, E. F. Schubert, and J. K. Kim, “Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO₂ nanohelixes used as photoanodes,” Opt. Express22(S3Suppl 3), A867–A879 (2014).
    [Crossref] [PubMed]
  6. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
    [Crossref]
  7. Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
    [Crossref]
  8. L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
    [Crossref]
  9. B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
    [Crossref] [PubMed]
  10. A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett.277(1-3), 105–108 (1997).
    [Crossref]
  11. P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
    [Crossref] [PubMed]
  12. M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
    [Crossref]
  13. M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
    [Crossref]
  14. H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
    [Crossref]
  15. Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
    [Crossref]
  16. S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
    [Crossref]
  17. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
    [Crossref]
  18. A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
    [Crossref] [PubMed]
  19. JCPDS 98–005–3997.
  20. J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
    [Crossref] [PubMed]
  21. J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
    [Crossref]
  22. Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
    [Crossref]
  23. Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
    [Crossref]
  24. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
    [Crossref]

2014 (1)

2013 (3)

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

2012 (3)

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(S2Suppl 2), A168–A176 (2012).
[Crossref] [PubMed]

2011 (2)

Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
[Crossref]

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

2010 (5)

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
[Crossref] [PubMed]

J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
[Crossref]

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

2009 (2)

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

2008 (2)

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

2006 (1)

B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[Crossref] [PubMed]

2004 (1)

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

2001 (1)

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

1998 (1)

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

1997 (1)

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett.277(1-3), 105–108 (1997).
[Crossref]

Arakawa, H.

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

Bach, U.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Bachmann, J.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Bisquert, J.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

Boix, P. P.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

Bourdais, S.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Burke, A.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

Cevey, L.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Cevey-Ha, N.-L.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Chen, H. W.

Chen, J. Z.

Cheng, I. C.

Chiang, C. C.

Chmielowski, R.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Choi, Y. S.

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

Comte, P.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Cui, C.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Dennler, G.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Dong, B.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Fabregat-Santiago, F.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

Fan, J.

J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
[Crossref] [PubMed]

J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
[Crossref]

Fang, Y.

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Feng, L.

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Gratzel, M.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Grätzel, C.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Grätzel, M.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Ho, K. C.

Hodes, G.

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

Hu, H.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Hu, J.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Humphry-Baker, R.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Im, S. H.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

Ito, S.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

Itzhaik, Y.

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

Jia, J.

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Jin, H.

Kashima, T.

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

Kawauchi, H.

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

Kim, D. Y.

Kim, G.

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

Kim, H. J.

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

Kim, J. K.

Kim, K.

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Kim, S.

Kim, Y. J.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Koo, H. J.

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Krüger, J.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Kwiatkowski, J.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

Lee, C.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

Lee, M. H.

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

Lee, S. H.

Lee, W. I.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Lee, Y. H.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Li, J.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Li, P.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Li, W.

Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
[Crossref]

Liang, D.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Lim, C. S.

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

Lin, Y.

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Liska, P.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Liu, D. W.

Liu, J.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Liu, S.

Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
[Crossref]

Lu, H.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Lupo, D.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Lv, K.

J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
[Crossref] [PubMed]

Michels, J.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Moon, S.-J.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Mora-Sero, I.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

Moser, J. E.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Moser, J.-E.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Muto, T.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Niitsoo, O.

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

Oh, S. H.

Page, M.

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

Park, N. G.

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Piccirelli, M.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Plass, R.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Rhee, J. H.

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

Salbeck, J.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Schubert, E. F.

Seok, S. I.

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

Shen, H.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Shi, Y.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Snaith, H.

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

Song, K.

Spreitzer, H.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Sugiura, M.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Sun, Q.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Tan, B.

B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[Crossref] [PubMed]

Tang, W.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Usami, A.

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett.277(1-3), 105–108 (1997).
[Crossref]

Wang, M.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Wang, P.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Wang, S.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

Wang, Z. S.

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

Wedemeyer, H.

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

Weissörtel, F.

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Wu, Y.

B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[Crossref] [PubMed]

Xu, S.

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

Yang, G.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Yu, I. G.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

Yu, J.

J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
[Crossref]

J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
[Crossref] [PubMed]

Zakeeruddin, S. M.

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Zhan, Q.

Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
[Crossref]

Zhang, J.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Zhang, Y.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Zhao, L.

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
[Crossref]

Zheng, J.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Zhou, X.

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Zhu, Y.

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

ACS Nano (1)

P. P. Boix, Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok, “From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells,” ACS Nano6(1), 873–880 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. J. Kim, M. H. Lee, H. J. Kim, G. Kim, Y. S. Choi, N. G. Park, K. Kim, and W. I. Lee, “Formation of highly efficient dye-sensitized solar cells by hierachical pore generation with nanoporous TiO2 spheres,” Adv. Mater.21(36), 1–6 (2009).
[Crossref]

H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater.20(1), 195–199 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett.79(13), 2085–2087 (2001).
[Crossref]

Chem. Phys. Lett. (1)

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett.277(1-3), 105–108 (1997).
[Crossref]

Coord. Chem. Rev. (1)

Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev.248(13-14), 1381–1389 (2004).
[Crossref]

Electrochim. Acta (2)

J. Yu, J. Fan, and L. Zhao, “Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method,” Electrochim. Acta55(3), 597–602 (2010).
[Crossref]

L. Feng, J. Jia, Y. Fang, X. Zhou, and Y. Lin, “TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells,” Electrochim. Acta87, 629–636 (2013).
[Crossref]

Energy Environ. Sci. (2)

S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte,” Energy Environ. Sci.4(8), 2799–2802 (2011).
[Crossref]

H. Wedemeyer, J. Michels, R. Chmielowski, S. Bourdais, T. Muto, M. Sugiura, G. Dennler, and J. Bachmann, “Nanocrystalline solar cells with an antimony sulfide solid absorber by atomic layer deposition,” Energy Environ. Sci.6(1), 67–71 (2012).
[Crossref]

J. Alloy. Comp. (2)

H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, and W. Tang, “Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells,” J. Alloy. Comp.560, 1–5 (2013).
[Crossref]

L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, and P. Wang, “Double light scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells,” J. Alloy. Comp.575, 168–173 (2013).
[Crossref]

J. Mater. Chem. (1)

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem.21(2), 532–538 (2010).
[Crossref]

J. Phys. Chem. B (1)

B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, “Sb2S3-Sensitized nanoporous TiO2 solar cell,” J. Phys. Chem. C113(11), 4254–4256 (2009).
[Crossref]

Mater. Chem. Phys. (1)

Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, “Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells,” Mater. Chem. Phys.123(2-3), 595–600 (2010).
[Crossref]

Nano Lett. (1)

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Grätzel, “The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes,” Nano Lett.8(4), 977–981 (2008).
[Crossref] [PubMed]

Nano Today (1)

M. Wang, J. Liu, N.-L. Cevey-Ha, S.-J. Moon, P. Liska, R. Humphry-Baker, J.-E. Moser, C. Grätzel, P. Wang, and S. M. Zakeeruddin, “High efficiency solid-state sensitized heterojunction photovoltaic device,” Nano Today5(3), 169–174 (2010).
[Crossref]

Nanoscale (1)

J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale2(10), 2144–2149 (2010).
[Crossref] [PubMed]

Nature (1)

M. Grätzel, U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, and H. Spreitzer, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature395(6702), 583–585 (1998).
[Crossref]

Opt. Express (2)

Powder Technol. (1)

Q. Zhan, W. Li, and S. Liu, “Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal,” Powder Technol.212(1), 145–150 (2011).
[Crossref]

Other (1)

JCPDS 98–005–3997.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Cross-sectional and surface SEM images of TiO2 films deposited by the soaking method with different reaction time. Yellow and green regions in cross-sectional SEM images represent the flat and particulate layer, respectively.
Fig. 2
Fig. 2 XRD graph of TiO2 film deposited on FTO substrate by soaking method with reaction time of 120 min.
Fig. 3
Fig. 3 Photocurrent-voltage (J-V) curve of ISSC fabricated using nanostructured TiO2 films by soaking method under AM 1.5G.
Fig. 4
Fig. 4 TEM cross-sectional images of TiO2 films deposited by soaking method with different reaction time with EDX mapping. (pink: Ti, green: Sb)
Fig. 5
Fig. 5 Diffuse reflectance of TiO2 films deposited by soaking method with various reaction time.
Fig. 6
Fig. 6 IPCE of ISSC based on nanostructured ISSC fabricated using nanostructured TiO2 films by soaking method with various reaction time.

Tables (1)

Tables Icon

Table 1 Device characteristics of ISSC fabricated using nanostructured TiO2 films by soaking method under AM 1.5G.

Metrics