Abstract

The NH4NO3 molten solution system was developed to synthesize LiYF4:Er3+/Yb3+ micromaterials. The influences of the reaction temperature and time on the crystal phase and shape evolution were investigated in detail. The morphology, rotation angle and temperature dependences of the visible emission of Er3+ in LiYF4:Er3+/Yb3+ were measured under the excitation of 979 nm. The UC emission band from 455 to 670 nm with the involvement of 2 NIR photons for the sample with tetragonal bipyramid shape is much stronger than that for one with polyhedra shape and exhibits low polarization degree, whereas that at 370-430 nm involving in 2 NIR photons for the former is much weaker than that for the latter and possesses high polarization degree. Finally, the temperature sensitive visible upconversion fluorescence characteristics of Er3+ in tetragonal bipyramid-like LiYF4:Er3+/Yb3+ micromaterials at temperatures between 300 and 10 K are investigated and discussed in detail.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed

Xiaojie Xue, Shinya Uechi, Rajanish N. Tiwari, Zhongchao Duan, Meisong Liao, Masamichi Yoshimura, Takenobu Suzuki, and Yasutake Ohishi
Opt. Mater. Express 3(7) 989-999 (2013)

Ion-redistribution induced efficient upconversion in β-NaYF4:20%Yb3+,2%Er3+ microcrystals with well controlled morphology and size

Shaohua Fan, Shikai Wang, Lu Yu, Hongtao Sun, Guojun Gao, and Lili Hu
Opt. Express 25(1) 180-190 (2017)

Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing

Lili Huo, Jiajia Zhou, Ruozhen Wu, Junfei Ren, Shengjun Zhang, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(4) 1056-1064 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–143 (2004).
    [Crossref] [PubMed]
  2. M. Haase and H. Schäfer, “Upconvertiong nanoparticles,” Angew. Chem. Int. Ed.50(26), 5808–5829 (2011).
    [Crossref]
  3. G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
    [Crossref] [PubMed]
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
    [Crossref]
  5. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  6. D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
    [Crossref]
  7. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
    [Crossref]
  8. H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem. Int. Ed. Engl.52(13), 3584–3600 (2013).
    [Crossref] [PubMed]
  9. J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
    [Crossref]
  10. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
    [Crossref] [PubMed]
  11. S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
    [Crossref]
  12. X. J. Xue, S. Y. Uechi, R. N. Tiwari, Z. C. Duan, M. S. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express3(7), 989–999 (2013).
    [Crossref]
  13. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
    [Crossref]
  14. J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
    [Crossref]
  15. G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
    [Crossref] [PubMed]
  16. G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
    [Crossref] [PubMed]
  17. Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
    [Crossref] [PubMed]
  18. E. Garcia and R. Ryan, “Structure of the laser host material LiYF4,” Acta Crystallogr. C49(12), 2053–2054 (1993).
    [Crossref]
  19. S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
    [Crossref]
  20. M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
    [Crossref]
  21. P. Afanasiev and C. Geantet, “Synthesis of solid materials in molten nitrates,” Coord. Chem. Rev.178–180, 1725–1752 (1998).
    [Crossref]
  22. C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
    [Crossref]
  23. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
    [Crossref]
  24. L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
    [Crossref]
  25. A. A. Kaminski, Crystalline Lasers: Physical Process and Operating Schemes (CRC, Boca Raton, FL. 1996), Vol. 60.
  26. F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
    [Crossref]
  27. K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
    [Crossref]
  28. W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
    [Crossref] [PubMed]
  29. H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
    [Crossref]
  30. H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
    [Crossref]
  31. X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
    [Crossref] [PubMed]
  32. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
    [Crossref]
  33. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).
  34. L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
    [Crossref]
  35. J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
    [Crossref]
  36. J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
    [Crossref] [PubMed]
  37. E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
    [Crossref]
  38. K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
    [Crossref]
  39. A. M. Pires and O. A. Serra, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys.98(6), 063529 (2005).
    [Crossref]

2014 (1)

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

2013 (6)

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem. Int. Ed. Engl.52(13), 3584–3600 (2013).
[Crossref] [PubMed]

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
[Crossref] [PubMed]

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

X. J. Xue, S. Y. Uechi, R. N. Tiwari, Z. C. Duan, M. S. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express3(7), 989–999 (2013).
[Crossref]

2012 (1)

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

2011 (5)

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconvertiong nanoparticles,” Angew. Chem. Int. Ed.50(26), 5808–5829 (2011).
[Crossref]

2010 (3)

F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

2009 (4)

L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
[Crossref]

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

2008 (1)

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

2007 (5)

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
[Crossref]

G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
[Crossref] [PubMed]

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

2006 (1)

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

2005 (1)

A. M. Pires and O. A. Serra, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys.98(6), 063529 (2005).
[Crossref]

2004 (3)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–143 (2004).
[Crossref] [PubMed]

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

2003 (1)

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

2001 (1)

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

1998 (1)

P. Afanasiev and C. Geantet, “Synthesis of solid materials in molten nitrates,” Coord. Chem. Rev.178–180, 1725–1752 (1998).
[Crossref]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

1993 (1)

E. Garcia and R. Ryan, “Structure of the laser host material LiYF4,” Acta Crystallogr. C49(12), 2053–2054 (1993).
[Crossref]

1970 (1)

J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[Crossref]

Aarts, L.

L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
[Crossref]

Abdulsabirov, R. Y.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Afanasiev, P.

P. Afanasiev and C. Geantet, “Synthesis of solid materials in molten nitrates,” Coord. Chem. Rev.178–180, 1725–1752 (1998).
[Crossref]

Ågren, H.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–143 (2004).
[Crossref] [PubMed]

Bai, X.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Beermann, N.

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

Bettinll, M.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

Bi, G.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Biner, D.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Boyer, D.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Boyer, J. C.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

Brinkley, S.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Briois, V.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Cao, L. H.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Capobianco, J. A.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

Chen, G. X.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Chen, H. Y.

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Chen, X. Y.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Chen, Y. H.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Chow, G. M.

G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
[Crossref] [PubMed]

Cui, J. B.

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

DenBaars, S.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Descroix, E.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[Crossref]

Ding, M. Y.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Dong, B.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

Du, Y. P.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

Duan, C. K.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Duan, Z. C.

Dubois, M.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Garcia, E.

E. Garcia and R. Ryan, “Structure of the laser host material LiYF4,” Acta Crystallogr. C49(12), 2053–2054 (1993).
[Crossref]

Geantet, C.

P. Afanasiev and C. Geantet, “Synthesis of solid materials in molten nitrates,” Coord. Chem. Rev.178–180, 1725–1752 (1998).
[Crossref]

Gorris, H. H.

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem. Int. Ed. Engl.52(13), 3584–3600 (2013).
[Crossref] [PubMed]

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
[Crossref]

Grimm, J.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

Gudel, H. U.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Güdel, H. U.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

Guyot, Y.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconvertiong nanoparticles,” Angew. Chem. Int. Ed.50(26), 5808–5829 (2011).
[Crossref]

Hagfeldt, A.

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hu, C. G.

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

Hu, C. H.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Hu, Y. L.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Huang, W. J.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Jiang, S.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Joubert, M. F.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Ju, Q.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

Kachynski, A.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Kelchner, K. M.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Kong, X.

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

Krämer, K. W.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Laroche, M.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Lee, W. B.

G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
[Crossref] [PubMed]

Lepoutre, S.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Li, J.

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Li, L.

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Li, R. F.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

Liao, M. S.

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lindquist, S. E.

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

Liu, H.

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

Liu, L. Q.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

Liu, X.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Liu, X. G.

F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Liu, Y. S.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Luthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

Mahalingam, V.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

Mahiou, R.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Mai, H. X.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

Malinowski, M.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Matioli, E.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Meijerink, A.

L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
[Crossref]

Moncorge, R.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Naccache, R.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

Nakamura, S. J.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Naumov, A. K.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Ni, Y. R.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Nicolas, S.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Niu, W. B.

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Ohishi, Y.

Ohulchanskyy, T. Y.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Ostermayer, F. W.

J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
[Crossref]

Pan, G.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Pires, A. M.

A. M. Pires and O. A. Serra, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys.98(6), 063529 (2005).
[Crossref]

Potdelvin, A.

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Prasad, P. N.

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Qin, R.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Qiu, J. R.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Qu, X.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

Richards, B. S.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
[Crossref]

Ryan, R.

E. Garcia and R. Ryan, “Structure of the laser host material LiYF4,” Acta Crystallogr. C49(12), 2053–2054 (1993).
[Crossref]

Schäfer, H.

M. Haase and H. Schäfer, “Upconvertiong nanoparticles,” Angew. Chem. Int. Ed.50(26), 5808–5829 (2011).
[Crossref]

Semashko, V. V.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Seo, J. W.

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

Serra, O. A.

A. M. Pires and O. A. Serra, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys.98(6), 063529 (2005).
[Crossref]

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
[Crossref]

Song, H.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Speck, J.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Speghini, A.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

Sun, L. D.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

Suyver, J. F.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

Suzuki, T.

Teng, Y.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Tiwari, R. N.

Tkachuk, A. M.

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Tu, D. T.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

Uechi, S. Y.

Van Der Ende, B. M.

L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
[Crossref]

Van Der Ziel, J. P.

J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
[Crossref]

Van Uitert, L. G.

J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
[Crossref]

Van Veen, M. K.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

Vayssieres, L.

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

Vetrone, F.

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

Wang, F.

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Wang, J.

F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, Y.

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Wang, Y. J.

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

Wang, Z. L.

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

Wei, X. T.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Weisbuch, C.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
[Crossref] [PubMed]

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem. Int. Ed. Engl.52(13), 3584–3600 (2013).
[Crossref] [PubMed]

Wu, B. T.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Wu, E.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Wu, K. Y.

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

Wu, S. L.

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Xi, Y.

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

Xu, J.

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Xu, Z. X.

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Xue, X. J.

Yan, C. H.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

Yang, C. H.

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

Yi, G. S.

G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
[Crossref] [PubMed]

Yin, M.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Yoshimura, M.

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Zhang, S. F.

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Zhang, Y. W.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

Zhao, H.

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

Zhou, J. J.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Zhou, S.

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

Zhou, S. F.

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Zhu, H. M.

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

ACS Nano (1)

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Acta Crystallogr. C (1)

E. Garcia and R. Ryan, “Structure of the laser host material LiYF4,” Acta Crystallogr. C49(12), 2053–2054 (1993).
[Crossref]

Adv. Mater. (1)

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, and J. A. Capobianco, “Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation,” Adv. Mater.21(40), 4025–4028 (2009).
[Crossref]

Angew. Chem. Int. Ed. (3)

F. Wang, J. Wang, and X. G. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed.49(41), 7456–7460 (2010).
[Crossref]

M. Haase and H. Schäfer, “Upconvertiong nanoparticles,” Angew. Chem. Int. Ed.50(26), 5808–5829 (2011).
[Crossref]

D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu, H. M. Zhu, R. F. Li, and X. Y. Chen, “Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals,” Angew. Chem. Int. Ed.50(28), 6306–6310 (2011).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem. Int. Ed. Engl.52(13), 3584–3600 (2013).
[Crossref] [PubMed]

C. R. Chim. (1)

J. Wang, F. Wang, J. Xu, Y. Wang, Y. S. Liu, X. Y. Chen, H. Y. Chen, and X. G. Liu, “Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning,” C. R. Chim.13(6–7), 731–736 (2010).
[Crossref]

Chem. Mater. (2)

K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004).
[Crossref]

L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides,” Chem. Mater.13(2), 233–235 (2001).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–143 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

G. Y. Chen, J. W. Seo, C. H. Yang, and P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics,” Chem. Soc. Rev.42(21), 8304–8338 (2013).
[Crossref] [PubMed]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev.42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

P. Afanasiev and C. Geantet, “Synthesis of solid materials in molten nitrates,” Coord. Chem. Rev.178–180, 1725–1752 (1998).
[Crossref]

CrystEngComm (1)

M. Y. Ding, C. H. Hu, L. H. Cao, W. J. Huang, Y. R. Ni, and Z. X. Xu, “Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence,” CrystEngComm15(30), 6015–6021 (2013).
[Crossref]

Dalton Trans. (2)

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors,” Dalton Trans.40(40), 8574–8581 (2009).
[Crossref] [PubMed]

W. B. Niu, S. L. Wu, S. F. Zhang, J. Li, and L. Li, “Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles,” Dalton Trans.40(13), 3305–3314 (2011).
[Crossref] [PubMed]

Energy Mater. Sol. Cells (1)

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Energy Mater. Sol. Cells91(9), 829–842 (2007).
[Crossref]

Inorg. Chem. (1)

X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem.47(20), 9654–9659 (2008).
[Crossref] [PubMed]

J. Alloy. Comp. (1)

S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp.588, 654–657 (2014).
[Crossref]

J. Appl. Phys. (4)

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinll, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys.96(1), 661–667 (2004).

L. Aarts, B. M. Van Der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys.106(2), 023522 (2009).
[Crossref]

K. Y. Wu, J. B. Cui, X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[Crossref]

A. M. Pires and O. A. Serra, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys.98(6), 063529 (2005).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[Crossref]

J. Lumin. (1)

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[Crossref]

J. Mater. Chem. (1)

C. G. Hu, Y. Xi, H. Liu, and Z. L. Wang, “Composite-hydroxides-mediated approach as a general methodology for synthesizing nanostructures,” J. Mater. Chem.19(7), 858–868 (2009).
[Crossref]

J. Nanosci. Nanotechnol. (1)

G. S. Yi, W. B. Lee, and G. M. Chow, “Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals,” J. Nanosci. Nanotechnol.7(8), 2790–2794 (2007).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly Efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C111(37), 13721–13729 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy,” J. Phys. Chem. C111(37), 13730–13739 (2007).
[Crossref]

J. Solid State Chem. (1)

S. Lepoutre, D. Boyer, A. Potdelvin, M. Dubois, V. Briois, and R. Mahiou, “Structural investigations of sol–gel-derived LiYF4 and LiGdF4 powders,” J. Solid State Chem.180(11), 3049–3057 (2007).
[Crossref]

Nano Lett. (1)

J. J. Zhou, G. X. Chen, E. Wu, G. Bi, B. T. Wu, Y. Teng, S. F. Zhou, and J. R. Qiu, “Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett.13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Opt. Mater. (1)

S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, R. Moncorge, R. Y. Abdulsabirov, A. K. Naumov, V. V. Semashko, A. M. Tkachuk, and M. Malinowski, “Potentiality of Pr3+- and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers,” Opt. Mater.22(2), 139–146 (2003).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. P. Van Der Ziel, F. W. Ostermayer, and L. G. Van Uitert, “Infrared Excitation of Visible Luminescence in Y1−xErxF3 via Resonant Energy Transfer,” Phys. Rev. B2(11), 4432–4441 (1970).
[Crossref]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[Crossref]

Science & Applications. (1)

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. J. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High brightness polarized light emitting diodes, Light,” Science & Applications.1(8), 1–6 (2012).
[Crossref]

Other (1)

A. A. Kaminski, Crystalline Lasers: Physical Process and Operating Schemes (CRC, Boca Raton, FL. 1996), Vol. 60.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The XRD patterns of the samples (a)for different NH4F usage amounts (reaction temperature: 250 °C, reaction time: 24 hours, X-Y-Z: molar ratio of LiNO3, Ln(NO3)3 and NH4F); (b) at reaction temperatures of 160, 200 and 250 °C (the molar ratio of LiNO3, Ln(NO3)3 and NH4F: 1:1:6); (c) for reaction times of 2, 6, 12 and 24 hours (the molar ratio of LiNO3, Ln(NO3)3 and NH4F: 1:1:6).
Fig. 2
Fig. 2 The morphology evolution of the as-obtained samples at reaction times (a: 2 hours, b: 6 hours, c:12 hours, d: 24 hours (the molar ratio of LiNO3, Ln(NO3)3 and NH4F: 1:1:6, reaction temperature: 250 °C)
Fig. 3
Fig. 3 The magnified TEM image (a, b) of S6, SAED image (c) and EDS spectrum (d) of S7, the magnified SEM image (e) of S3.
Fig. 4
Fig. 4 The UC emission spectra of the samples S8 and S3.
Fig. 5
Fig. 5 The polarized UC emission spectra of the sample S3 at room temperatures (the excitation wavelength is 979 nm)
Fig. 6
Fig. 6 The UC emission spectra of the product S3 at different temperatures (the excitation wavelength is 979 nm).

Metrics