Abstract

This paper presents a rapid approach for assembling gold nano-particles (AuNPs)-based microstructures using optically-induced electrokinetics. Results showed that number of AuNPs in the assembled microstructures could be controlled by adjusting the input optically-induced electrokinetics parameters. The formation conditions were experimentally investigated by varying several key electrokinetics parameters, and the results were compared to a numerical simulation of the electrokinetic forces. The experimental results were also analyzed by counting the number of deposited AuNPs in a microstructure using an image processing algorithm. We will show that the optimal parameters for this optoelectronic AuNPs assembly method are electric field frequency range from 9 to 11 kHz with a voltage range of 18-20 Vpp, and an optical exposure time of ~120 s.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis

Yen-Heng Lin, Kai-Siang Ho, Chin-Tien Yang, Jung-Hao Wang, and Chao-Sung Lai
Opt. Express 22(11) 13811-13824 (2014)

Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices

Shu-Ju Lin, Shih-Hsun Hung, Jun-Yuan Jeng, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 20(1) 583-592 (2012)

Characterization of the self-rotational motion of stored red blood cells by using optically-induced electrokinetics

Wenfeng Liang, Yuechao Wang, Hemin Zhang, and Lianqing Liu
Opt. Lett. 41(12) 2763-2766 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
    [Crossref] [PubMed]
  2. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
    [Crossref] [PubMed]
  3. L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: Recent advances and perspectives,” Chem. Soc. Rev.41(6), 2256–2282 (2012).
    [Crossref] [PubMed]
  4. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
    [Crossref] [PubMed]
  5. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
    [Crossref] [PubMed]
  6. J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
    [Crossref]
  7. B. K. Jena and C. R. Raj, “Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles,” Anal. Chem.78(18), 6332–6339 (2006).
    [Crossref] [PubMed]
  8. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
    [Crossref]
  9. Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
    [Crossref] [PubMed]
  10. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
    [Crossref] [PubMed]
  11. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  12. Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
    [Crossref] [PubMed]
  13. L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
    [Crossref]
  14. J. Toset and G. Gomila, “Three-dimensional manipulation of gold nanoparticles with electroenhanced capillary forces,” Appl. Phys. Lett.96(4), 043117 (2010).
    [Crossref]
  15. S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).
  16. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  17. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
    [Crossref] [PubMed]
  18. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
    [Crossref] [PubMed]
  19. M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
    [Crossref]
  20. W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
    [Crossref]
  21. S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
    [Crossref]
  22. T. B. Jones, Electromechanics of Particles (Cambridge Univ. Press, 1995), Chap. 3.
  23. W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).
  24. A. Jamshidi, Optoelectronic manipulation, assembly, and patterning of nanoparticles (Ph. D. dissertation, University of California, Berkeley, fall 2009), Chap. 5.
  25. A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
    [Crossref]
  26. P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
    [Crossref]
  27. W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
    [Crossref]
  28. A. S. Abutaleb, “Automatic thresholding of gray-level pictures using two-dimensional entropy,” Comput. Vis. Graph. Image Process.47(1), 22–32 (1989).
    [Crossref]
  29. M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–168 (2004).
    [Crossref]
  30. C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
    [Crossref] [PubMed]

2013 (1)

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

2012 (3)

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: Recent advances and perspectives,” Chem. Soc. Rev.41(6), 2256–2282 (2012).
[Crossref] [PubMed]

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

2011 (2)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

2010 (3)

M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
[Crossref]

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

J. Toset and G. Gomila, “Three-dimensional manipulation of gold nanoparticles with electroenhanced capillary forces,” Appl. Phys. Lett.96(4), 043117 (2010).
[Crossref]

2009 (3)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[Crossref] [PubMed]

C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
[Crossref] [PubMed]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

2008 (5)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
[Crossref]

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
[Crossref] [PubMed]

L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
[Crossref]

2006 (1)

B. K. Jena and C. R. Raj, “Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles,” Anal. Chem.78(18), 6332–6339 (2006).
[Crossref] [PubMed]

2005 (5)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[Crossref] [PubMed]

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[Crossref] [PubMed]

2004 (1)

M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–168 (2004).
[Crossref]

2003 (1)

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

2002 (1)

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

1989 (1)

A. S. Abutaleb, “Automatic thresholding of gray-level pictures using two-dimensional entropy,” Comput. Vis. Graph. Image Process.47(1), 22–32 (1989).
[Crossref]

Abutaleb, A. S.

A. S. Abutaleb, “Automatic thresholding of gray-level pictures using two-dimensional entropy,” Comput. Vis. Graph. Image Process.47(1), 22–32 (1989).
[Crossref]

Ahn, T. K.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[Crossref] [PubMed]

Bauer, R. E.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Besnard, I.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bickford, L. R.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[Crossref] [PubMed]

Castellanos, A.

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

Cheng, C. C.

C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
[Crossref] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[Crossref] [PubMed]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

Coughlin, A. J.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Day, E. S.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Dong, Z.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Drezek, R. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Dykman, L.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: Recent advances and perspectives,” Chem. Soc. Rev.41(6), 2256–2282 (2012).
[Crossref] [PubMed]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[Crossref] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Fujimoto, A.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Fukuzumi, S.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Gomila, G.

J. Toset and G. Gomila, “Three-dimensional manipulation of gold nanoparticles with electroenhanced capillary forces,” Appl. Phys. Lett.96(4), 043117 (2010).
[Crossref]

Gonzalez, A.

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

González-Cortés, A.

J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
[Crossref]

Green, N. G.

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

Guo, S.

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Guse, B.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hasobe, T.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Hirakawa, T.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Hsu, H. Y.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

Hu, Y.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[Crossref] [PubMed]

Hwang, W. L.

C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
[Crossref] [PubMed]

Imahori, H.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Jamshidi, A.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

Jena, B. K.

B. K. Jena and C. R. Raj, “Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles,” Anal. Chem.78(18), 6332–6339 (2006).
[Crossref] [PubMed]

Kamat, P. V.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Kennedy, L. C.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Khlebtsov, N.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: Recent advances and perspectives,” Chem. Soc. Rev.41(6), 2256–2282 (2012).
[Crossref] [PubMed]

Kim, D.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Kim, S. K.

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

Krasteva, N.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Lee, G. B.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
[Crossref]

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Lee, M. W.

M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
[Crossref]

Leung, S. L.

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

Lewinski, N. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Li, M.

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

Li, W. J.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Liang, W.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Lin, Y. H.

M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
[Crossref]

Liu, L.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

Liu, N.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

Liu, Z.

L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
[Crossref]

Mai, J. D.

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

Morgan, H.

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

Müllen, K.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Neale, S. L.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Ofir, Y.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
[Crossref] [PubMed]

Ohta, A. T.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[Crossref] [PubMed]

Pauzauskie, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

Peng, G. J.

C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
[Crossref] [PubMed]

Pingarrón, J. M.

J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
[Crossref]

Qu, Y.

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Raj, C. R.

B. K. Jena and C. R. Raj, “Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles,” Anal. Chem.78(18), 6332–6339 (2006).
[Crossref] [PubMed]

Ramos, A.

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

Rotello, V. M.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
[Crossref] [PubMed]

Samanta, B.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
[Crossref] [PubMed]

Sankur, B.

M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–168 (2004).
[Crossref]

Schuck, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

Sezgin, M.

M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–168 (2004).
[Crossref]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Tong, L.

L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
[Crossref]

Toset, J.

J. Toset and G. Gomila, “Three-dimensional manipulation of gold nanoparticles with electroenhanced capillary forces,” Appl. Phys. Lett.96(4), 043117 (2010).
[Crossref]

Valley, J. K.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Vossmeyer, T.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Wang, E.

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Wang, S.

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

West, J. L.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Wu, M. C.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[Crossref] [PubMed]

Yáñez-Sedeño, P.

J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
[Crossref]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

Yasuda, A.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Yu, K.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Zhai, Y.

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Zhu, C.

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Zhu, T.

L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
[Crossref]

Anal. Chem. (1)

B. K. Jena and C. R. Raj, “Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles,” Anal. Chem.78(18), 6332–6339 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

L. Tong, T. Zhu, and Z. Liu, “Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement,” Appl. Phys. Lett.92(2), 023109 (2008).
[Crossref]

J. Toset and G. Gomila, “Three-dimensional manipulation of gold nanoparticles with electroenhanced capillary forces,” Appl. Phys. Lett.96(4), 043117 (2010).
[Crossref]

Chem. Soc. Rev. (3)

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev.37(9), 1814–1825 (2008).
[Crossref] [PubMed]

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[Crossref] [PubMed]

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: Recent advances and perspectives,” Chem. Soc. Rev.41(6), 2256–2282 (2012).
[Crossref] [PubMed]

Comput. Vis. Graph. Image Process. (1)

A. S. Abutaleb, “Automatic thresholding of gray-level pictures using two-dimensional entropy,” Comput. Vis. Graph. Image Process.47(1), 22–32 (1989).
[Crossref]

Electrochim. Acta (1)

J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta53(19), 5848–5866 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

C. C. Cheng, G. J. Peng, and W. L. Hwang, “Subband weighting with pixel connectivity for 3-D wavelet coding,” IEEE Trans. Image Process.18(1), 52–62 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[Crossref] [PubMed]

T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles,” J. Am. Chem. Soc.127(4), 1216–1228 (2005).
[Crossref] [PubMed]

J. Electron. Imaging (1)

M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging13(1), 146–168 (2004).
[Crossref]

J. Microelectromech. Syst. (1)

P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” J. Microelectromech. Syst.17(3), 525–531 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws,” J. Phys. D Appl. Phys.36(20), 2584–2597 (2003).
[Crossref]

Langmuir (1)

Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, “Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing,” Langmuir26(13), 11277–11282 (2010).
[Crossref] [PubMed]

Microfluid. Nanofluid. (1)

M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid.8(5), 609–617 (2010).
[Crossref]

Micromachines (2)

W. Liang, S. Wang, Z. Dong, G. B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation,” Micromachines3(4), 492–508 (2012).
[Crossref]

S. Wang, W. Liang, Z. Dong, G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines2(4), 431–442 (2011).
[Crossref]

Nano Lett. (4)

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Lett.9(8), 2921–2925 (2009).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[Crossref] [PubMed]

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications,” Nano Lett.2(5), 551–555 (2002).
[Crossref]

Nat. Photonics (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics2(2), 86–89 (2008).
[Crossref] [PubMed]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (2)

S. L. Leung, M. Li, W. J. Li, and J. D. Mai, “Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques,” Sensor. Actuat. A-Phys.178, 32–39 (2012).

W. Liang, N. Liu, Z. Dong, L. Liu, J. D. Mai, G. B. Lee, and W. J. Li, “Simultaneous separation and concentration of micro- and nano-particles by optically-induced electrokinetics,” Sensor. Actuat. A-Phys.193, 103–111 (2013).

Small (1)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7(2), 169–183 (2011).
[Crossref] [PubMed]

Other (3)

A. Jamshidi, Optoelectronic manipulation, assembly, and patterning of nanoparticles (Ph. D. dissertation, University of California, Berkeley, fall 2009), Chap. 5.

T. B. Jones, Electromechanics of Particles (Cambridge Univ. Press, 1995), Chap. 3.

W. Liang, S. Wang, Y. Qu, Z. Dong, G. B. Lee, and W. J. Li, “An equivalent electrical model for numerical analyses of ODEP manipulation,” in Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 825–830.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Three-dimensional schematic illustration of the OEK chip. The schematic of the assembled AuNPs structure on the a-Si:H layer indicates that the optically projected square pattern can concentrate AuNPs into a special microstructure with four lines pointing toward the vertex of the square.
Fig. 2
Fig. 2 Schematic illustration of the experimental setup for optically induced electrokinetic assembly of the AuNPs. The setup was composed of an image acquisition system to observe the manipulation and concentration process of the particles, an image generation system to generate the virtual electrode using the commercial software Flash and then project it to the lower surface of the OEK chip by a commercial LCD projector, and a three-dimensional digital control system to automatically and accurately control the motion of the OEK chip.
Fig. 3
Fig. 3 Assembly of AuNP-based microstructures. (a) The incident optical patterns were projected onto the OEK chip and no bias potential was applied. (b) The suspended AuNPs were concentrated in the illuminated areas when an external AC voltage potential with 10 Vpp at a frequency of 20 kHz was switched on. (c) The microscope image of assembly of AuNPs. (d) The SEM image of (c). (e) SEM image of the patterned AuNPs structure in the regular triangle pattern. (f) SEM image of the patterned AuNPs structure in the square pattern.
Fig. 4
Fig. 4 Concentration and assembly of AuNPs with different liquid conductivities, frequencies, and voltages. (a) The AuNPs’ microstructures were formed only in the frequency range of 10-20 kHz with a liquid conductivity of 5 × 10−5 S/m. (b) The AuNPs’ microstructures were formed only in the frequency range of 15-20 kHz with a liquid conductivity of 5 × 10−4 S/m. (c) The AuNPs’ microstructures were formed only in the frequency range of 8-9 kHz with a liquid conductivity of 5 × 10−3 S/m. All scale bars are 30 μm.
Fig. 5
Fig. 5 Simulation results for the distribution of the DEP vectors induced by the optical spot (a), ring (b), triangle (c), and square (d) patterns, respectively. The liquid conductivity is 5 × 10−5 S/m at the frequency range of 10-20 kHz with a voltage of 16 Vpp.
Fig. 6
Fig. 6 FEM simulation result of the ACEO force distribution in the liquid chamber. The arrows indicate the direction of the ACEO force vectors; the surface color represents the magnitude of the ACEO force; and the isolines indicate the magnitude of the ACEO force distribution. The difference between any of the two adjacent isolines was 0.1 pN. The applied frequency was 10 kHz at a voltage of 16 Vpp.
Fig. 7
Fig. 7 DEP and ACEO forces exerted on the AuNPs with different liquid conductivity as a function of the applied frequency. The applied voltage was 16 Vpp.
Fig. 8
Fig. 8 Projected electrode pattern on the a-Si:H surface.
Fig. 9
Fig. 9 SEM images of AuNP deposition on a-Si:H at an applied frequency of 9.5 kHz at 20Vpp. (a) SEM image of the AuNPs on the electrode pattern. (b) SEM image of the AuNPs on the electrode. (c) SEM image of the AuNPs on the pad. All scale bars are 5 μm.
Fig. 10
Fig. 10 Evaluation of the assembled AuNPs on the electrode (a) and pad (b) areas by image processing as a function of applied frequency and exposure time.

Tables (1)

Tables Icon

Table 1 Experimental Parameters of the Formed AuNP Microstructures

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F DEP =2π R 3 ε m Re[K(ω)] | E rms | 2
υ slip = ε m ζ E t 2η
F ACEO =3πR ε m ζ E t

Metrics