Abstract

The exocuticle of Rhomborhina Gigantea was examined for its iridescent properties. The iridescence was explained using theory of optical reflectors. The structural color was found due to chirality in the exocuticle layers and is structurally similar to cholesteric liquid crystals. The structure of the exocuticle was determined using electron microscopy. The optical properties were determined through reflection and diffraction experiments, giving strong green coloration of the exocuticle. The reflection spectra showed contrasting trends in the overall reflected intensity with respect to angle of incidence in transverse electric and transverse magnetic polarizations suggesting the presence of chirality. The average index of refraction and the half-pitch were derived from the optimal Bragg condition using the optical data. The half-pitch determined from scanning electron microscopy images was similar to the calculated values in both linear polarizations. The average refractive indices determined from the results in both polarizations were compared to the reported value. The consistency of the results confirmed that the structure responsible for the iridescent beetle was bio-optical analogue to cholesteric liquid crystals.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data

Hans Arwin, Torun Berlind, Blaine Johs, and Kenneth Järrendahl
Opt. Express 21(19) 22645-22656 (2013)

Evidence for a dispersion relation of optical modes in the cuticle of the scarab beetle Cotinis mutabilis

A. Mendoza-Galván, E. Muñoz-Pineda, K. Järrendahl, and H. Arwin
Opt. Mater. Express 4(12) 2484-2496 (2014)

Observation and modeling of polarized light from scarab beetles

Sam Lowrey, Lakshman De Silva, Ian Hodgkinson, and John Leader
J. Opt. Soc. Am. A 24(8) 2418-2425 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Parker, “The diversity and implications of animal structural colours,” J. Exp. Biol.201(Pt 16), 2343–2347 (1998).
    [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev.99(7), 1935–1962 (1999).
    [Crossref] [PubMed]
  3. A. R. Parker, “A geological history of reflecting optics,” J. R. Soc. Interface2(2), 1–17 (2005).
    [Crossref] [PubMed]
  4. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  5. F. P. Barrows and M. H. Bartl, “Photonic structures in biology: A possible blueprint for nanotechonology,” Nanomater. Nanotechnol.4, 1–12 (2014).
  6. O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14(8), 3547–3555 (2006).
    [Crossref] [PubMed]
  7. F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
    [Crossref]
  8. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
    [Crossref] [PubMed]
  9. L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
    [Crossref]
  10. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc.44(4), 531–562 (1969).
    [Crossref] [PubMed]
  11. S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24(8), 2418–2425 (2007).
    [Crossref] [PubMed]
  12. S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
    [Crossref]
  13. D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
    [Crossref]
  14. D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
    [PubMed]
  15. S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.
  16. P. G. De Gennes, The Physics of Liquid Crystals (Clarendon Press, 1974).
  17. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 1967).
  18. M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
    [Crossref]
  19. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci.178(1051), 205–225 (1971).
    [Crossref] [PubMed]
  20. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  21. H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies,” Opt. Mater. Express3(8), 1087–1092 (2013).
    [Crossref]

2014 (1)

F. P. Barrows and M. H. Bartl, “Photonic structures in biology: A possible blueprint for nanotechonology,” Nanomater. Nanotechnol.4, 1–12 (2014).

2013 (1)

2008 (2)

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

2007 (4)

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24(8), 2418–2425 (2007).
[Crossref] [PubMed]

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
[Crossref]

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

2006 (1)

2005 (2)

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

A. R. Parker, “A geological history of reflecting optics,” J. R. Soc. Interface2(2), 1–17 (2005).
[Crossref] [PubMed]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[Crossref] [PubMed]

1999 (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[Crossref] [PubMed]

1998 (2)

A. R. Parker, “The diversity and implications of animal structural colours,” J. Exp. Biol.201(Pt 16), 2343–2347 (1998).
[PubMed]

D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
[PubMed]

1971 (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci.178(1051), 205–225 (1971).
[Crossref] [PubMed]

1969 (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc.44(4), 531–562 (1969).
[Crossref] [PubMed]

Arnold, M.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Barrows, F. P.

F. P. Barrows and M. H. Bartl, “Photonic structures in biology: A possible blueprint for nanotechonology,” Nanomater. Nanotechnol.4, 1–12 (2014).

Bartl, M. H.

F. P. Barrows and M. H. Bartl, “Photonic structures in biology: A possible blueprint for nanotechonology,” Nanomater. Nanotechnol.4, 1–12 (2014).

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

Braun, P. V.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Brink, D. J.

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

Caveney, S.

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci.178(1051), 205–225 (1971).
[Crossref] [PubMed]

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc.44(4), 531–562 (1969).
[Crossref] [PubMed]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

Cheah, K. W.

H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies,” Opt. Mater. Express3(8), 1087–1092 (2013).
[Crossref]

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Ching, S. Y.

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Colomer, J. F.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

De Silva, L.

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24(8), 2418–2425 (2007).
[Crossref] [PubMed]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Deparis, O.

Fan, S. H.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

García-Santamaría, F.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

Goh, D. T. P.

H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies,” Opt. Mater. Express3(8), 1087–1092 (2013).
[Crossref]

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Goh, J. K. L.

H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies,” Opt. Mater. Express3(8), 1087–1092 (2013).
[Crossref]

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Hodgkinson, I.

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24(8), 2418–2425 (2007).
[Crossref] [PubMed]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Hodgkinson, I. J.

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

Jewell, S. A.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
[Crossref]

Large, M.

D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
[PubMed]

Large, M. C. J.

D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
[PubMed]

Leader, J.

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24(8), 2418–2425 (2007).
[Crossref] [PubMed]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Lewis, J. A.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Li, G.

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Lousse, V.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Lowrey, S.

Mckenzie, D.

D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
[PubMed]

Mcnaughton, A.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Murray, P.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Neville, A. C.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc.44(4), 531–562 (1969).
[Crossref] [PubMed]

Parker, A. R.

A. R. Parker, “A geological history of reflecting optics,” J. R. Soc. Interface2(2), 1–17 (2005).
[Crossref] [PubMed]

A. R. Parker, “The diversity and implications of animal structural colours,” J. Exp. Biol.201(Pt 16), 2343–2347 (1998).
[PubMed]

Prinsloo, L. C.

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

Rassart, M.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14(8), 3547–3555 (2006).
[Crossref] [PubMed]

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

Roberts, N. W.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[Crossref] [PubMed]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Tabarrant, T.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

Tam, H. L.

H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, “Iridescence and nano-structure differences in Papilio butterflies,” Opt. Mater. Express3(8), 1087–1092 (2013).
[Crossref]

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

Van Der Berg, N. G.

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

Vandenbem, C.

Vigneron, J. P.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14(8), 3547–3555 (2006).
[Crossref] [PubMed]

Vukusic, P.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[Crossref] [PubMed]

Welch, V. L.

Wu, Q. H.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

Xu, M. J.

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Adv. Mater. (1)

F. García-Santamaría, M. J. Xu, V. Lousse, S. H. Fan, P. V. Braun, and J. A. Lewis, “A germanium inverse woodpile structure with a large photonic band gap,” Adv. Mater.19(12), 1567–1570 (2007).
[Crossref]

Biol. Rev. Camb. Philos. Soc. (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc.44(4), 531–562 (1969).
[Crossref] [PubMed]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev.99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Electromagnetics (1)

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. Mcnaughton, “Natural and nanoengineered chiral reflectors: Structural color of manuka beetles and titania coatings,” Electromagnetics25(5), 391–408 (2005).
[Crossref]

J. Exp. Biol. (2)

A. R. Parker, “The diversity and implications of animal structural colours,” J. Exp. Biol.201(Pt 16), 2343–2347 (1998).
[PubMed]

D. Mckenzie, M. Large, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201(Pt 9), 1307–1313 (1998).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

D. J. Brink, N. G. Van Der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys.40(7), 2189–2196 (2007).
[Crossref]

J. R. Soc. Interface (1)

A. R. Parker, “A geological history of reflecting optics,” J. R. Soc. Interface2(2), 1–17 (2005).
[Crossref] [PubMed]

Nanomater. Nanotechnol. (1)

F. P. Barrows and M. H. Bartl, “Photonic structures in biology: A possible blueprint for nanotechonology,” Nanomater. Nanotechnol.4, 1–12 (2014).

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys.9(4), 99 (2007).
[Crossref]

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10(3), 033014 (2008).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[Crossref] [PubMed]

Proc. R. Soc. Lond. B Biol. Sci. (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci.178(1051), 205–225 (1971).
[Crossref] [PubMed]

Other (4)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

S. Y. Ching, G. Li, H. L. Tam, D. T. P. Goh, J. K. L. Goh, and K. W. Cheah, “Photonic nano-structure of R. Gigantea,” in Proceedings of IEEE International NanoElectroncis Conference (IEEE, 2010), pp. 1360–1361.

P. G. De Gennes, The Physics of Liquid Crystals (Clarendon Press, 1974).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Rhomborhina Gigantea (scale bar: 1 cm).
Fig. 2
Fig. 2 (a) SEM image of the elytron of R. Gigantea and an enhanced image (inset) of dash-lined region (scale bar: 2 μm); and (b) SEM image showing the layer structures of the elytron partially removed by focused ion beams (scale bar: 1 μm).
Fig. 3
Fig. 3 Diffraction spectra of the elytron of R. Gigantea.
Fig. 4
Fig. 4 Reflection spectra in (a) TE and (b) TM polarizations of the elytron of R. Gigantea.
Fig. 5
Fig. 5 Comparing peak wavelengths in green color region of the reflection spectra in TE and TM polarizations.
Fig. 6
Fig. 6 Linear-fit of peak wavelengths in green color region of the reflection spectra in (a) TE and (b) TM polarizations respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ max =2n P h ,
λ o = n av P o cos ϕ 1 =2 n av P h cos ϕ 1 ,
sin 2 ϕ o = 1 P o 2 λ o 2 + n av 2 ,

Metrics