Abstract

In this paper, windmill-shaped planar structure arrays operating in the mid-IR regime are proposed. Strong chiral dichroism of windmill-shaped planar structure is obtained numerically. The dependence of spectral characteristics on the geometrical parameters of the windmill-shaped planar structure is analyzed by the finite-difference time-domain (FDTD) method. The chiroptical near-field response of windmill-shaped planar structure arrays is also determined. Furthermore, potential applications of the proposed windmill-shaped planar structure due to its enhanced near-field chiroptical response and tunable characteristics are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
L-shaped ITO structures fabricated by oblique angle deposition technique for mid-infrared circular dichroism

Ya-Li Zhu, Bo-Wen Cao, Jing-Wen Li, Ying Wu, Ai-Xia Lu, Lin-Yong Qian, Cai-Qin Han, and Chang-Chun Yan
Opt. Express 27(23) 33243-33250 (2019)

Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials

Tun Cao, Yang Li, Chen-Wei Wei, and Yi-mei Qiu
Opt. Express 25(9) 9911-9925 (2017)

Enhanced circular dichroism of double L-shaped nanorods induced by gap plasmon coupling

Zhimin Jing, Yu Bai, Tiankun Wang, Hamad Ullah, Ying Li, and Zhongyue Zhang
J. Opt. Soc. Am. B 36(10) 2721-2726 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
    [Crossref]
  2. G. D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules (Springer, 1996).
  3. D.-H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  5. A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
    [Crossref]
  6. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
    [Crossref] [PubMed]
  7. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
    [Crossref] [PubMed]
  8. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
    [Crossref] [PubMed]
  9. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
  10. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
    [Crossref]
  11. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
    [Crossref] [PubMed]
  12. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
    [Crossref] [PubMed]
  13. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
    [Crossref] [PubMed]
  14. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86(7), 075428 (2012).
    [Crossref]
  15. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
    [Crossref] [PubMed]
  16. T. Cao, C. Wei, and L. Zhang, “Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials,” Opt. Mater. Express4, 1526–1534 (2014).
  17. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
    [Crossref] [PubMed]
  18. A. Drezet, C. Genet, J.-Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008).
    [Crossref] [PubMed]
  19. K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83(2), 021803 (2011).
    [Crossref]
  20. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science332(6027), 333–336 (2011).
    [Crossref] [PubMed]
  21. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104(16), 163901 (2010).
    [Crossref] [PubMed]
  22. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
    [Crossref] [PubMed]
  23. A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries,” J. Phys. Chem. C115(16), 7914–7923 (2011).
    [Crossref]
  24. N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
    [Crossref] [PubMed]
  25. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15(15), 9575–9583 (2007).
    [Crossref] [PubMed]
  26. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta706(1), 8–24 (2011).
    [Crossref] [PubMed]
  27. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [Crossref] [PubMed]
  28. A. Taflove and S. C. Hagness, Electromagnetic Simulation Using the FDTD Method, 3rd ed. (Artech House, 2005).
  29. S. D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, 3rd ed. (Morgan & Claypool Publishers, 2011).
  30. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, 2nd ed. (Wiley-IEEE Press, 2013).
  31. The numerical simulations are carried out using a finite-difference-time-domain package (Lumerical FDTD Solutions, 2014). www.lumerical.com
  32. S. L. Ma, T. B. Freedman, R. K. Dukor, and L. A. Nafie, “Near-infrared and mid-infrared fourier transform vibrational circular dichroism of proteins in aqueous solution,” Appl. Spectrosc.64(6), 615–626 (2010).
    [Crossref] [PubMed]
  33. W. L. Wolfe, Introduction to Infrared System Design (SPIE, WA, 1996).
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2014 (1)

2012 (5)

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86(7), 075428 (2012).
[Crossref]

2011 (6)

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83(2), 021803 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science332(6027), 333–336 (2011).
[Crossref] [PubMed]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta706(1), 8–24 (2011).
[Crossref] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries,” J. Phys. Chem. C115(16), 7914–7923 (2011).
[Crossref]

2010 (4)

S. L. Ma, T. B. Freedman, R. K. Dukor, and L. A. Nafie, “Near-infrared and mid-infrared fourier transform vibrational circular dichroism of proteins in aqueous solution,” Appl. Spectrosc.64(6), 615–626 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104(16), 163901 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

1979 (1)

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
[Crossref]

Abdulrahman, N. A.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

Alonso-Gómez, J. L.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Arakawa, Y.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

Auguié, B.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

Bai, B.

Bai, P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83(2), 021803 (2011).
[Crossref]

Cao, T.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

Cid, M. M.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104(16), 163901 (2010).
[Crossref] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

Davis, T. J.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86(7), 075428 (2012).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[Crossref] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

Drezet, A.

Dukor, R. K.

Ebbesen, T. W.

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86(7), 075428 (2012).
[Crossref]

Fan, Z.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

Freedman, T. B.

Gadegaard, N.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Genet, C.

Giessen, H.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Govorov, A. O.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries,” J. Phys. Chem. C115(16), 7914–7923 (2011).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Guerrero-Martínez, A.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Hendry, E.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Iwamoto, S.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

Jaggard, D. L.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
[Crossref]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Klein, M. W.

Konishi, K.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15(15), 9575–9583 (2007).
[Crossref] [PubMed]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta706(1), 8–24 (2011).
[Crossref] [PubMed]

Kumagai, N.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15(15), 9575–9583 (2007).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Kwon, D.-H.

Laluet, J.-Y.

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
[Crossref]

Li, E. P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

Liz-Marzán, L. M.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Ma, S. L.

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
[Crossref]

Mickelson, A. R.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Nafie, L. A.

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Nomura, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83(2), 021803 (2011).
[Crossref]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

Papas, C. H.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
[Crossref]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
[Crossref]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta706(1), 8–24 (2011).
[Crossref] [PubMed]

Plum, E.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Schäferling, M.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Sugimoto, T.

Svirko, Y.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15(15), 9575–9583 (2007).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104(16), 163901 (2010).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tonooka, T.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[Crossref] [PubMed]

Wei, C.

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Werner, D. H.

Werner, P. L.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

Wu, L.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Zhang, L.

Zheludev, N. I.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

ACS Nano (1)

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta706(1), 8–24 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. (Berl.) (1)

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. (Berl.)18(2), 211–216 (1979).
[Crossref]

Appl. Phys. Lett. (1)

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93(23), 233106 (2008).
[Crossref]

Appl. Spectrosc. (1)

J. Phys. Chem. C (1)

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries,” J. Phys. Chem. C115(16), 7914–7923 (2011).
[Crossref]

Nano Lett. (3)

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett.12(2), 977–983 (2012).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10(4), 1374–1382 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Nano Today (1)

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6(4), 381–400 (2011).
[Crossref]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83(2), 021803 (2011).
[Crossref]

Phys. Rev. B (1)

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86(7), 075428 (2012).
[Crossref]

Phys. Rev. Lett. (5)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[Crossref] [PubMed]

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106(5), 057402 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104(16), 163901 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science332(6027), 333–336 (2011).
[Crossref] [PubMed]

Other (7)

A. Taflove and S. C. Hagness, Electromagnetic Simulation Using the FDTD Method, 3rd ed. (Artech House, 2005).

S. D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, 3rd ed. (Morgan & Claypool Publishers, 2011).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, 2nd ed. (Wiley-IEEE Press, 2013).

The numerical simulations are carried out using a finite-difference-time-domain package (Lumerical FDTD Solutions, 2014). www.lumerical.com

W. L. Wolfe, Introduction to Infrared System Design (SPIE, WA, 1996).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

G. D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of proposed WS-PS. (a) Top view of the unit cell structure. (b) Perspective view of the unit cell structure.
Fig. 2
Fig. 2 (a, b) Transmittance, reflection, and absorption spectra of left-handed WS-PS for (a) LCP and (b) RCP excitation. (c, d) Circular dichroism of left-handed (LH) and right-handed (RH) WS-PS arrays under (c) forward and (d) backward illumination. The corresponding parameters are H = 1600 nm, W = 100 nm, P = 1900 nm, t = 35 nm, and d = 35 nm.
Fig. 3
Fig. 3 Electric field distributions by the WS-PS illuminated with (a, b) RCP and (c, d) LCP at f1 and f2 resonance points. The corresponding parameters are H = 1600 nm, W = 100 nm, P = 1900 nm, t = 35 nm, and d = 35 nm.
Fig. 4
Fig. 4 Optical chirality, C, enhancement by the WS-PS illuminated with (a, b) RCP and (c, d) LCP at f1 and f2 resonance points (H = 1600 nm, W = 100 nm, P = 1900 nm, t = 35 nm, and d = 35 nm).
Fig. 5
Fig. 5 Circular dichroism results of WS-PS arrays. (a) H-variation at fixed W = 100 nm, P = 1900 nm, d = 35 nm, t = 35 nm, and θ = 0°, (b) W-variation at fixed H = 1700 nm, P = 1900 nm, d = 35 nm, t = 35 nm, and θ = 0°, (c) P-variation at fixed H = 1700 nm, W = 100 nm, d = 35 nm, t = 35 nm, and θ = 0°, (d) d-variation at fixed H = 1700 nm, W = 100 nm, P = 1900 nm, t = 35 nm, and θ = 0°, (e) t-variation at fixed H = 1700 nm, W = 100 nm, P = 1900 nm, d = 35 nm, and θ = 0°, (f) θ-variation at fixed H = 1700 nm, W = 100 nm, P = 1900 nm, d = 35 nm, and t = 35 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ε 0 2 E × E + 1 2 μ 0 B × B

Metrics