Abstract

Making use of homogenization techniques, core-shell particle nanocomposites have been considered to estimate the efficiency of the effective permittivity nulling and enhanced absorption in terms of bandwidth. Core-shell metallodielectric spheres are shown to hold promise as building blocks for the design of metamaterials with the real part of the effective permittivity close to zero, as well as with a high absorption over a frequency band. In the former case, the imaginary part of the effective permittivity remains relatively high over the band, in particular, due to strong electron scattering at the shell boundaries. In the latter case, ultrabroadband metamaterial absorbtion can be realized which is resulted from individual absorption band overlapping.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient broadband infrared absorbers based on core-shell nanostructures

Henrik A. Parsamyan, Khachatur V. Nerkararyan, and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 36(10) 2643-2649 (2019)

Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited]

Salvatore Campione, Matteo Albani, and Filippo Capolino
Opt. Mater. Express 1(6) 1077-1089 (2011)

Nanostructured metamaterials with broadband optical properties

Anatoliy V. Goncharenko, Vladimir U. Nazarov, and Kuan-Ren Chen
Opt. Mater. Express 3(2) 143-156 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A.V. Goncharenko and K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton.4, 041530 (2010).
    [Crossref]
  2. A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
    [Crossref]
  3. L. Sun and K.W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29, 984–989 (2012).
    [Crossref]
  4. A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
    [Crossref]
  5. S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
    [Crossref]
  6. A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
    [Crossref]
  7. A.V. Goncharenko and A.O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Exp.4, 1276–1286 (2014).
    [Crossref]
  8. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86, 165103 (2012).
    [Crossref]
  9. K. Halterman and J.M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express22, 7337–7348 (2014).
    [Crossref] [PubMed]
  10. Y.B. Chen and F.C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon-near-zero mode, and magnetic polaritons,” Opt. Express21, 20771–20785 (2013).
    [Crossref] [PubMed]
  11. S. Vassant, J.P. Hugonin, F. Marquier, and J.J. Greffet, “Berreman mode and epsilon-near-zero mode,” Opt. Express20, 23971–23977 (2012).
    [Crossref] [PubMed]
  12. J.C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. A203, 385–420 (1904).
    [Crossref]
  13. A. Moroz, “Effective medium properties, mean-field description, homogenization, or homogenisation of photonic crystals”, http://www.wave-scattering.com/pbgheadlines.html
  14. K.W. Whites, “Permittivity of a multiphase and isotropic lattice of spheres at low frequency,” J. Appl. Phys.88, 1962–1970 (2000).
    [Crossref]
  15. R.T. Bonnecaze and J.F. Brady, “The effective conductivity of random suspensions of spherical particles,” Roc. R. Soc. Lond. A432, 445–465 (1991).
    [Crossref]
  16. D.C. Pham and S. Torquato, “Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites,” J. Appl. Phys.94, 6591–6602 (2003).
    [Crossref]
  17. A. Liebsch and P.V. Gonzalez, “Optical properties of randomly distributed particles,” Phys. Rev. B29, 6907–6920 (1984).
    [Crossref]
  18. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
    [Crossref]
  19. L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
    [Crossref]
  20. S. Feng, “Lost-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
    [Crossref]
  21. C.W. Cheng, M.N. Abbas, C.W. Chiu, K.T. Lai, M.H. Shih, and Y.C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express20, 10376–10381 (2012).
    [Crossref] [PubMed]
  22. C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
    [Crossref]
  23. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon gybridization in piramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express22, 12678–12690 (2014).
    [Crossref] [PubMed]
  24. N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30, 362–367 (2005).
    [Crossref]
  25. L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
    [Crossref]
  26. W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).
  27. N. Harfield, “Bulk permittivity of a composite with coated spheroidal filler particles,” J. Mater. Sci.35, 5809–5816 (2000).
    [Crossref]
  28. N. Bowler, “Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite,” IEEE Trans. Diel. Electr. Insul.13, 703–711 (2006).
    [Crossref]
  29. R.R. Bilboul, “A note on the permittivity of a double-layer ellipsoid,” J. Appl. Phys. D: Appl. Phys.2, 921–923 (1969).
    [Crossref]
  30. J.C. Maxwell, Treatise on Electricity and Magnetism (Dover, New York, 1873).
  31. A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
    [Crossref]
  32. A.V. Goncharenko and Y.C. Chang, “Effective dielectric properties of biological cells: Generalization of the spectral density function approach,” J. Phys. Chem. B113, 9924–9931 (2009).
    [Crossref] [PubMed]
  33. D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 1. Simple cubic lattice,” Phil. Trans. Roy. Soc. A.359, 45–63 (1978).
  34. D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 2. Body-centered and face-centered cubic lattices,” Phil. Trans. Roy. Soc. A.362, 211–232 (1978).
  35. A.S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. Lond A386, 263–275 (1983).
    [Crossref]
  36. H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres with interfacial resistance,” Proc. R. Soc. Lond A453, 145–161 (1997).
    [Crossref]
  37. R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
    [Crossref]
  38. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C112, 10641–10652 (2008).
    [Crossref]
  39. N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards,” J. Stat. Phys.88, 1–29 (1997).
    [Crossref]
  40. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
    [Crossref]
  41. R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
    [Crossref] [PubMed]
  42. J.B. Jackson and N.J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105, 2743–2746 (2001).
    [Crossref]
  43. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
    [Crossref]
  44. J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, “Polarization insensitive, broadband terahertz meta-material absorber,” Opt. Lett.36, 3476–3477 (2011).
    [Crossref] [PubMed]
  45. V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
    [Crossref]
  46. R. Chang and P.T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B73, 125438 (2006).
    [Crossref]

2014 (4)

K. Halterman and J.M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express22, 7337–7348 (2014).
[Crossref] [PubMed]

A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
[Crossref]

A.V. Goncharenko and A.O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Exp.4, 1276–1286 (2014).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon gybridization in piramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express22, 12678–12690 (2014).
[Crossref] [PubMed]

2013 (5)

C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Y.B. Chen and F.C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon-near-zero mode, and magnetic polaritons,” Opt. Express21, 20771–20785 (2013).
[Crossref] [PubMed]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
[Crossref]

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

2012 (8)

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
[Crossref]

L. Sun and K.W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29, 984–989 (2012).
[Crossref]

S. Vassant, J.P. Hugonin, F. Marquier, and J.J. Greffet, “Berreman mode and epsilon-near-zero mode,” Opt. Express20, 23971–23977 (2012).
[Crossref] [PubMed]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
[Crossref]

S. Feng, “Lost-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[Crossref]

C.W. Cheng, M.N. Abbas, C.W. Chiu, K.T. Lai, M.H. Shih, and Y.C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express20, 10376–10381 (2012).
[Crossref] [PubMed]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86, 165103 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

2011 (3)

J. Grant, Y. Ma, S. Saha, A. Khalid, and D.R.S. Cumming, “Polarization insensitive, broadband terahertz meta-material absorber,” Opt. Lett.36, 3476–3477 (2011).
[Crossref] [PubMed]

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

2010 (2)

A.V. Goncharenko and K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton.4, 041530 (2010).
[Crossref]

V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
[Crossref]

2009 (1)

A.V. Goncharenko and Y.C. Chang, “Effective dielectric properties of biological cells: Generalization of the spectral density function approach,” J. Phys. Chem. B113, 9924–9931 (2009).
[Crossref] [PubMed]

2008 (1)

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C112, 10641–10652 (2008).
[Crossref]

2007 (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[Crossref]

2006 (2)

R. Chang and P.T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B73, 125438 (2006).
[Crossref]

N. Bowler, “Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite,” IEEE Trans. Diel. Electr. Insul.13, 703–711 (2006).
[Crossref]

2005 (1)

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30, 362–367 (2005).
[Crossref]

2003 (1)

D.C. Pham and S. Torquato, “Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites,” J. Appl. Phys.94, 6591–6602 (2003).
[Crossref]

2001 (1)

J.B. Jackson and N.J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105, 2743–2746 (2001).
[Crossref]

2000 (3)

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

N. Harfield, “Bulk permittivity of a composite with coated spheroidal filler particles,” J. Mater. Sci.35, 5809–5816 (2000).
[Crossref]

K.W. Whites, “Permittivity of a multiphase and isotropic lattice of spheres at low frequency,” J. Appl. Phys.88, 1962–1970 (2000).
[Crossref]

1997 (2)

N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards,” J. Stat. Phys.88, 1–29 (1997).
[Crossref]

H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres with interfacial resistance,” Proc. R. Soc. Lond A453, 145–161 (1997).
[Crossref]

1991 (1)

R.T. Bonnecaze and J.F. Brady, “The effective conductivity of random suspensions of spherical particles,” Roc. R. Soc. Lond. A432, 445–465 (1991).
[Crossref]

1988 (1)

R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
[Crossref]

1984 (1)

A. Liebsch and P.V. Gonzalez, “Optical properties of randomly distributed particles,” Phys. Rev. B29, 6907–6920 (1984).
[Crossref]

1983 (1)

A.S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. Lond A386, 263–275 (1983).
[Crossref]

1978 (2)

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 1. Simple cubic lattice,” Phil. Trans. Roy. Soc. A.359, 45–63 (1978).

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 2. Body-centered and face-centered cubic lattices,” Phil. Trans. Roy. Soc. A.362, 211–232 (1978).

1973 (1)

W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).

1969 (1)

R.R. Bilboul, “A note on the permittivity of a double-layer ellipsoid,” J. Appl. Phys. D: Appl. Phys.2, 921–923 (1969).
[Crossref]

1904 (1)

J.C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. A203, 385–420 (1904).
[Crossref]

Abbas, M.N.

Acrivos, A.

A.S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. Lond A386, 263–275 (1983).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Bardhan, R.

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

Barrera, R.G.

R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
[Crossref]

Bilboul, R.R.

R.R. Bilboul, “A note on the permittivity of a double-layer ellipsoid,” J. Appl. Phys. D: Appl. Phys.2, 921–923 (1969).
[Crossref]

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

Blossey, D.F.

W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).

Bonic, I.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

Bonnecaze, R.T.

R.T. Bonnecaze and J.F. Brady, “The effective conductivity of random suspensions of spherical particles,” Roc. R. Soc. Lond. A432, 445–465 (1991).
[Crossref]

Bousmina, M.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Bowler, N.

N. Bowler, “Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite,” IEEE Trans. Diel. Electr. Insul.13, 703–711 (2006).
[Crossref]

Brady, J.F.

R.T. Bonnecaze and J.F. Brady, “The effective conductivity of random suspensions of spherical particles,” Roc. R. Soc. Lond. A432, 445–465 (1991).
[Crossref]

Briggs, D.P.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Brosseau, C.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Chang, C.C.

C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
[Crossref]

Chang, C.L.

C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
[Crossref]

Chang, R.

R. Chang and P.T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B73, 125438 (2006).
[Crossref]

Chang, Y.C.

C.W. Cheng, M.N. Abbas, C.W. Chiu, K.T. Lai, M.H. Shih, and Y.C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express20, 10376–10381 (2012).
[Crossref] [PubMed]

A.V. Goncharenko and Y.C. Chang, “Effective dielectric properties of biological cells: Generalization of the spectral density function approach,” J. Phys. Chem. B113, 9924–9931 (2009).
[Crossref] [PubMed]

Chen, K.R.

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
[Crossref]

A.V. Goncharenko and K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton.4, 041530 (2010).
[Crossref]

Chen, Y.B.

Cheng, C.W.

Cheng, H.

H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres with interfacial resistance,” Proc. R. Soc. Lond A453, 145–161 (1997).
[Crossref]

Chernov, N.

N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards,” J. Stat. Phys.88, 1–29 (1997).
[Crossref]

Chiu, C.W.

Chiu, F.C.

Cumming, D.R.S.

Deparis, O.

Elson, J.M.

Essone Mezeme, M.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86, 165103 (2012).
[Crossref]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
[Crossref]

S. Feng, “Lost-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[Crossref]

Gao, L.

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

Goncharenko, A.V.

A.V. Goncharenko and A.O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Exp.4, 1276–1286 (2014).
[Crossref]

A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
[Crossref]

A.V. Goncharenko and K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton.4, 041530 (2010).
[Crossref]

A.V. Goncharenko and Y.C. Chang, “Effective dielectric properties of biological cells: Generalization of the spectral density function approach,” J. Phys. Chem. B113, 9924–9931 (2009).
[Crossref] [PubMed]

Gonzalez, P.V.

A. Liebsch and P.V. Gonzalez, “Optical properties of randomly distributed particles,” Phys. Rev. B29, 6907–6920 (1984).
[Crossref]

Grant, J.

Greffet, J.J.

Grigorenko, A.N.

V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
[Crossref]

Halas, N.

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30, 362–367 (2005).
[Crossref]

Halas, N.J.

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

J.B. Jackson and N.J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105, 2743–2746 (2001).
[Crossref]

Halterman, K.

K. Halterman and J.M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express22, 7337–7348 (2014).
[Crossref] [PubMed]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86, 165103 (2012).
[Crossref]

Harfield, N.

N. Harfield, “Bulk permittivity of a composite with coated spheroidal filler particles,” J. Mater. Sci.35, 5809–5816 (2000).
[Crossref]

Henrard, L.

Hrabar, S.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

Huang, C.L.

C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
[Crossref]

Hugonin, J.P.

Jackson, J.B.

J.B. Jackson and N.J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105, 2743–2746 (2001).
[Crossref]

Joshi, A.

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

Khalid, A.

Kiricenko, A.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

Kravchenko, I.I.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Kravets, V.G.

V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
[Crossref]

Krois, I.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

Lai, K.T.

Lal, S.

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

Lard, M.

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[Crossref]

Leung, P.T.

R. Chang and P.T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B73, 125438 (2006).
[Crossref]

Li, Z.Y.

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

Liebsch, A.

A. Liebsch and P.V. Gonzalez, “Optical properties of randomly distributed particles,” Phys. Rev. B29, 6907–6920 (1984).
[Crossref]

Lobet, M.

Ma, Y.

Malki, M.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Marquier, F.

Maxwell, J.C.

J.C. Maxwell, Treatise on Electricity and Magnetism (Dover, New York, 1873).

Maxwell Garnett, J.C.

J.C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. A203, 385–420 (1904).
[Crossref]

McKenzie, D.R.

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 1. Simple cubic lattice,” Phil. Trans. Roy. Soc. A.359, 45–63 (1978).

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 2. Body-centered and face-centered cubic lattices,” Phil. Trans. Roy. Soc. A.362, 211–232 (1978).

McPhedran, R.C.

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 2. Body-centered and face-centered cubic lattices,” Phil. Trans. Roy. Soc. A.362, 211–232 (1978).

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 1. Simple cubic lattice,” Phil. Trans. Roy. Soc. A.359, 45–63 (1978).

Mejdoubi, A.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Mochan, W.L.

R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Monsivais, G.

R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
[Crossref]

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

Moroz, A.

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C112, 10641–10652 (2008).
[Crossref]

Nazarov, V.U.

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
[Crossref]

Neubeck, S.

V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
[Crossref]

Pham, D.C.

D.C. Pham and S. Torquato, “Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites,” J. Appl. Phys.94, 6591–6602 (2003).
[Crossref]

Pinchuk, A.O.

A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
[Crossref]

A.V. Goncharenko and A.O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Exp.4, 1276–1286 (2014).
[Crossref]

Saha, S.

Sangani, A.S.

A.S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. Lond A386, 263–275 (1983).
[Crossref]

Sarrazin, M.

Sekkat, Z.

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

Shih, M.H.

Sun, L.

L. Sun and K.W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29, 984–989 (2012).
[Crossref]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
[Crossref]

Tinga, W.R.

W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).

Torquato, S.

D.C. Pham and S. Torquato, “Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites,” J. Appl. Phys.94, 6591–6602 (2003).
[Crossref]

H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres with interfacial resistance,” Proc. R. Soc. Lond A453, 145–161 (1997).
[Crossref]

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Vassant, S.

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

Venger, E.F.

A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
[Crossref]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[Crossref]

Wan, J.T.K.

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

Whites, K.W.

K.W. Whites, “Permittivity of a multiphase and isotropic lattice of spheres at low frequency,” J. Appl. Phys.88, 1962–1970 (2000).
[Crossref]

Woss, W.A.G.

W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).

Yang, X.

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Yu, K.W.

L. Sun and K.W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29, 984–989 (2012).
[Crossref]

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

Acc. Chem. Res. (1)

R. Bardhan, S. Lal, A. Joshi, and N.J. Halas, “Theranostic nanoshells: From probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterials,” Appl. Phys. Lett.102, 054108 (2013).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101, 071907 (2012).
[Crossref]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.101, 241101 (2012).
[Crossref]

IEEE Trans. Diel. Electr. Insul. (1)

N. Bowler, “Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite,” IEEE Trans. Diel. Electr. Insul.13, 703–711 (2006).
[Crossref]

J. Appl. Phys. (5)

A. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina, and C. Brosseau, “Optical scattering and electric field enhancement from core-shell plasmonic nanostructures,” J. Appl. Phys.110, 103105 (2011).
[Crossref]

L. Gao, J.T.K. Wan, K.W. Yu, and Z.Y. Li, “Effect of highly conducting interface and particle size distribution on optical nonlinearoty in granular composites,” J. Appl. Phys.88, 1893–1899 (2000).
[Crossref]

W.R. Tinga, W.A.G. Woss, and D.F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3902 (1973).

K.W. Whites, “Permittivity of a multiphase and isotropic lattice of spheres at low frequency,” J. Appl. Phys.88, 1962–1970 (2000).
[Crossref]

D.C. Pham and S. Torquato, “Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites,” J. Appl. Phys.94, 6591–6602 (2003).
[Crossref]

J. Appl. Phys. D: Appl. Phys. (1)

R.R. Bilboul, “A note on the permittivity of a double-layer ellipsoid,” J. Appl. Phys. D: Appl. Phys.2, 921–923 (1969).
[Crossref]

J. Mater. Sci. (1)

N. Harfield, “Bulk permittivity of a composite with coated spheroidal filler particles,” J. Mater. Sci.35, 5809–5816 (2000).
[Crossref]

J. Nanophoton. (1)

A.V. Goncharenko and K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton.4, 041530 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

A.V. Goncharenko and Y.C. Chang, “Effective dielectric properties of biological cells: Generalization of the spectral density function approach,” J. Phys. Chem. B113, 9924–9931 (2009).
[Crossref] [PubMed]

J.B. Jackson and N.J. Halas, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B105, 2743–2746 (2001).
[Crossref]

J. Phys. Chem. C (1)

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C112, 10641–10652 (2008).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[Crossref]

J. Stat. Phys. (1)

N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards,” J. Stat. Phys.88, 1–29 (1997).
[Crossref]

MRS Bull. (1)

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30, 362–367 (2005).
[Crossref]

Nature Photon. (1)

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nature Photon.7, 791–795 (2013).
[Crossref]

Opt. Commun. C (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. C285, 3412–3418 (2012).
[Crossref]

Opt. Expess (1)

A.V. Goncharenko, E.F. Venger, and A.O. Pinchuk, “Homogenization of quasi-1d metamaterials and the problem of extended bandwidth,” Opt. Expess22, 2429–2442 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Exp. (2)

A.V. Goncharenko and A.O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Exp.4, 1276–1286 (2014).
[Crossref]

A.V. Goncharenko, V.U. Nazarov, and K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Exp.3, 143–156 (2013).
[Crossref]

Phil. Trans. Roy. Soc. A (1)

J.C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. A203, 385–420 (1904).
[Crossref]

Phil. Trans. Roy. Soc. A. (2)

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 1. Simple cubic lattice,” Phil. Trans. Roy. Soc. A.359, 45–63 (1978).

D.R. McKenzie and R.C. McPhedran, “Conductivity of lattices of spheres. 2. Body-centered and face-centered cubic lattices,” Phil. Trans. Roy. Soc. A.362, 211–232 (1978).

Phys. Rev. B (5)

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86, 165103 (2012).
[Crossref]

A. Liebsch and P.V. Gonzalez, “Optical properties of randomly distributed particles,” Phys. Rev. B29, 6907–6920 (1984).
[Crossref]

V.G. Kravets, S. Neubeck, and A.N. Grigorenko, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81, 165401 (2010).
[Crossref]

R. Chang and P.T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B73, 125438 (2006).
[Crossref]

R.G. Barrera, G. Monsivais, and W.L. Mochan, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B38, 5371–5379 (1988).
[Crossref]

Phys. Rev. Lett. (1)

S. Feng, “Lost-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[Crossref]

Proc. R. Soc. Lond A (2)

A.S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. R. Soc. Lond A386, 263–275 (1983).
[Crossref]

H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres with interfacial resistance,” Proc. R. Soc. Lond A453, 145–161 (1997).
[Crossref]

Roc. R. Soc. Lond. A (1)

R.T. Bonnecaze and J.F. Brady, “The effective conductivity of random suspensions of spherical particles,” Roc. R. Soc. Lond. A432, 445–465 (1991).
[Crossref]

Solar Energy (1)

C.C. Chang, C.L. Huang, and C.L. Chang, “Poly(urethane)-based solar absorber coatings containing nanogold,” Solar Energy91, 350–357 (2013).
[Crossref]

Other (2)

J.C. Maxwell, Treatise on Electricity and Magnetism (Dover, New York, 1873).

A. Moroz, “Effective medium properties, mean-field description, homogenization, or homogenisation of photonic crystals”, http://www.wave-scattering.com/pbgheadlines.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch of the geometry under considerations: core-shell spheres of different kind embedded in a dielectric host.
Fig. 2
Fig. 2 The effective permittivity of arrays of silica-silver core-shell spheres embedded in silica host at f = 0.1 for different values of the parameter q. The arrows show the positions of zeros of Reεeff. The solid and dashed curves denote the real and imaginary parts of εeff, respectively.
Fig. 3
Fig. 3 The imaginary part of the effective permittivity of arrays of silica-silver core-shell spheres embedded in different hosts at the crossover wavelength λcros, where Reε(λcros) = 0 for f = 0.15 (solid curves) and f = 0.3 (dashed curves).
Fig. 4
Fig. 4 The effective permittivity of arrays of silica-silver core-shell spheres (f = 0.15, ε0 = 2.5) with Reεeff fitted to zero with 10% and 15% bandwidths at λ0 = 600 nm. The parameters of the spheres are q1 = 0.402, q2 = 0.457, q3 = 0.533, f1 = 0.028, f2 = 0.029 (Δ = 10%) and q1 = 0.4, q2 = 0.467, q3 = 0.538, f1 = 0.036, f2 = 0.076 (Δ = 15%).
Fig. 5
Fig. 5 The imaginary part of the effective permittivity of arrays of silica-silver core-shell spheres embedded in silica host with Reεeff fitted to zero for different bandwidths at λ0 = 600 nm and f = 0.15.
Fig. 6
Fig. 6 The absorption spectra for slabs made of silica-silver core-shell spheres embedded in different hosts with 15% bandwidth at f = 0.15 and d = λ0 = 600 nm. The parameters of the spheres are q1 = 0.47, q2 = 0.54, q3 = 0.677, f1 = 0.014, f2 = 0.01 (ε0 = 1.823); q1 = 0.415, q2 = 0.485, q3 = 0.64, f1 = 0.01, f2 = 0.007 (ε0 = 2.25); q1 = 0.38, q2 = 0.45, q3 = 0.62, f1 = 0.0086, f2 = 0.0056 (ε0 = 2.5).
Fig. 7
Fig. 7 The absorption spectra for slabs made of silica-silver and silica-gold core-shell spheres embedded in Teflon host with 50% bandwidth at f = 0.2 and d = λ0 = 650 nm. The parameters of the spheres are q1 = 0.484, q2 = 0.66, q3 = 0.803, f1 = 0.032, f2 = 0.03 (silver nanoshells); q1 = 0.34, q2 = 0.609, q3 = 0.771, f1 = 0.05, f2 = 0.034 (gold nanoshells).
Fig. 8
Fig. 8 The imaginary part of the partial polarizabilities fiαi and their sum for silica-silver core-shell spheres. The parameters of the particles are the same as in Fig. 4 for Δ = 10%.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

D n ( χ i ) = ω 1 ω 2 | Re ε eff ( χ i , ω ) | 2 d ω ,
D a ( χ i ) = ω 1 ω 2 [ R ( χ i , ω ) + T ( χ i , ω ) ] d ω ,
ε eff ε 0 ( 1 + 3 i = 1 N f i α i 1 i = 1 N f i α i ) ,
ε e ( i ) = ε 1 ( 1 3 q i q i 1 3 s 12 ) ,
ε eff ε 0 [ 1 + 3 i f i α i 1 i f i α i ( 1 + c f i 7 / 3 α i * ) ] .
γ = γ ( b ) + a v F L eff ,
Δ ε 1 = ε 1 ε 1 ( b ) i ω p 2 ω 3 v F L eff ,
L eff = 4 r 1 3 1 q 3 1 + q 2 ,
ε e ( λ cros ) ε 0 f 1 2 f + 1 .
ε eff ( λ cros ) 3 f ε 0 α 9 / 4 + f 2 α 2
α ( λ cros ) = 3 ε 0 ε e ( ε e + 2 ε 0 ) 2 + ε e 2 3 ε 0 ε e ε 0 2 ( η + 2 ) 2 + ε e 2
ε eff ( λ cros ) 4 3 f ε 0 α ,
α ( λ cros ) 3 ε e ε 0 ( η + 2 ) 2 .
ε eff ( λ cros ) 4 9 f + f 2 + 1 / 4 f ε e ( λ cros ) ,
ε e ( λ cros ) ε 1 [ 1 3 q R ( ε 2 ε 1 + 3 ε 2 ε 1 R ) ]
ε e ( λ cros ) ε 1 ( 1 + 3 q ε 1 R ) .
ε eff ( λ ) 3 ε 0 i = 1 N f i α i ( 1 i = 1 N f i α i ) 2 + ( i = 1 N f i α i ) 2 .

Metrics