Abstract

Elastico-mechanoluminescence (EML) in diphase (Ba,Ca)TiO3:Pr3+ with 60 mol% Ca content was greatly enhanced by Gd3+ codoping. The optimal EML intensity of (Ba,Ca)TiO3:Pr3+,Gd3+ is higher by 235% than that of (Ba,Ca)TiO3:Pr3+. The decreases of both photoluminescent intensity and reflectivity induced by Gd3+ codoping suggest the introduction of new trap centers. The thermoluminescent (ThL) measurement has been performed to investigate the effect of codoping on the trap depth and concentration. The consistent dependency correlations of EML intensity and ThL integral intensity on the Gd3+ concentration illuminate that the improved EML originates from the increased concentration of traps with suitable depth. A possible EML mechanism for (Ba,Ca)TiO3:Pr3+,Gd3+ is proposed on the basis of these experimental observations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M = Sr, Ca) isomorphic perovskites

Cong Pan, Jun-Cheng Zhang, Min Zhang, Xu Yan, Hong-Di Zhang, Yun-Ze Long, Xin-Yuan Sun, and Hai-Tao Jiang
Opt. Mater. Express 8(6) 1425-1434 (2018)

Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor

Xin-Hua Fan, Jun-Cheng Zhang, Min Zhang, Cong Pan, Xu Yan, Wen-Peng Han, Hong-Di Zhang, Yun-Ze Long, and Xusheng Wang
Opt. Express 25(13) 14238-14246 (2017)

Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels

Jun-Cheng Zhang, Chao-Nan Xu, and Yun-Ze Long
Opt. Express 21(11) 13699-13709 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
    [Crossref]
  2. B. P. Chandra, “Mechanoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Plenum Press, 1988), p. 361.
  3. B. P. Chandra and A. S. Rathore, “Classification of mechanoluminescence,” Cryst. Res. Technol.30(7), 885–896 (1995).
    [Crossref]
  4. C. N. Xu, “Coatings,” in Encyclopedia of Smart Materials, edited by M. Schwartz (Wiley, 2002), 1, 190.
  5. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
    [Crossref]
  6. C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
    [Crossref]
  7. N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J.13(10), 3999–4004 (2013).
    [Crossref]
  8. N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
    [Crossref]
  9. J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
    [Crossref] [PubMed]
  10. J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
    [Crossref] [PubMed]
  11. V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
    [Crossref]
  12. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
    [Crossref]
  13. D. R. Reddy and B. K. Reddy, “Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor,” Appl. Phys. Lett.81(3), 460–462 (2002).
    [Crossref]
  14. S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
    [Crossref] [PubMed]
  15. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
    [Crossref]
  16. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
    [Crossref]
  17. M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
    [Crossref]
  18. L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
    [Crossref]
  19. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
    [Crossref]
  20. J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
    [Crossref]
  21. J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
    [Crossref]
  22. J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
    [Crossref]
  23. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [Crossref]
  24. A. M. Pires and M. R. Davolos, “Luminescence of europium (III) and manganese (II) in barium and orthosiliate,” Chem. Mater.13(1), 21–27 (2001).
    [Crossref]
  25. J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
    [Crossref]
  26. J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
    [Crossref]
  27. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  28. P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
    [Crossref]
  29. P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
    [Crossref]
  30. A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
    [Crossref]

2014 (1)

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

2013 (5)

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J.13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref] [PubMed]

2012 (2)

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[Crossref]

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

2011 (1)

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

2010 (3)

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[Crossref]

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

2008 (4)

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
[Crossref]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

2007 (1)

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

2005 (1)

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

2002 (1)

D. R. Reddy and B. K. Reddy, “Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor,” Appl. Phys. Lett.81(3), 460–462 (2002).
[Crossref]

2001 (1)

A. M. Pires and M. R. Davolos, “Luminescence of europium (III) and manganese (II) in barium and orthosiliate,” Chem. Mater.13(1), 21–27 (2001).
[Crossref]

1999 (3)

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

1997 (1)

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

1995 (1)

B. P. Chandra and A. S. Rathore, “Classification of mechanoluminescence,” Cryst. Res. Technol.30(7), 885–896 (1995).
[Crossref]

1977 (1)

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[Crossref]

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

Boutinaud, P.

P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
[Crossref]

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

Chandra, B. P.

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[Crossref]

B. P. Chandra and A. S. Rathore, “Classification of mechanoluminescence,” Cryst. Res. Technol.30(7), 885–896 (1995).
[Crossref]

Chandra, V. K.

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[Crossref]

Cousseins, J. C.

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

Davolos, M. R.

A. M. Pires and M. R. Davolos, “Luminescence of europium (III) and manganese (II) in barium and orthosiliate,” Chem. Mater.13(1), 21–27 (2001).
[Crossref]

Diallo, P. T.

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

Du, Y.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

Ha, N. Y.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Imai, Y.

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

Jeong, S. M.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Kamimura, S.

Lee, S. K.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Li, C.

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

Li, Y.

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

Long, Y. Z.

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref] [PubMed]

Mahiou, R.

P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
[Crossref]

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

Matsui, H.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

Nishikubo, K.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

Nonaka, K.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

Pinel, E.

P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
[Crossref]

Pires, A. M.

A. M. Pires and M. R. Davolos, “Luminescence of europium (III) and manganese (II) in barium and orthosiliate,” Chem. Mater.13(1), 21–27 (2001).
[Crossref]

Rathore, A. S.

B. P. Chandra and A. S. Rathore, “Classification of mechanoluminescence,” Cryst. Res. Technol.30(7), 885–896 (1995).
[Crossref]

Reddy, B. K.

D. R. Reddy and B. K. Reddy, “Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor,” Appl. Phys. Lett.81(3), 460–462 (2002).
[Crossref]

Reddy, D. R.

D. R. Reddy and B. K. Reddy, “Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor,” Appl. Phys. Lett.81(3), 460–462 (2002).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[Crossref]

Song, S.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Tang, M.

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

Terasaki, N.

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J.13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

Terasawa, Y.

Walton, J.

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]

Wang, J.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

Wang, X.

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[Crossref]

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

Watanabe, T.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

Xu, C. N.

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[Crossref]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J.13(10), 3999–4004 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref] [PubMed]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

Yamada, H.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

Yang, W.

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

Yao, X.

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[Crossref]

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

Zhang, H.

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

Zhang, J. C.

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref] [PubMed]

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[Crossref]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

Zhang, L.

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

Zhao, D.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

Zheng, X. G.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

Zhu, A.

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[Crossref]

Adv. Mater. (2)

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater.25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Adv. Phys. (1)

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]

Appl. Phys. Lett. (4)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]

D. R. Reddy and B. K. Reddy, “Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor,” Appl. Phys. Lett.81(3), 460–462 (2002).
[Crossref]

Catal. Today (1)

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[Crossref]

Ceram. Int. (1)

J. C. Zhang, M. Tang, X. Wang, Y. Li, and X. Yao, “Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3-CaTiO3 diphase ceramics with water resistance behavior,” Ceram. Int.38(S1), S581–S584 (2012).
[Crossref]

Chem. Mater. (1)

A. M. Pires and M. R. Davolos, “Luminescence of europium (III) and manganese (II) in barium and orthosiliate,” Chem. Mater.13(1), 21–27 (2001).
[Crossref]

Cryst. Res. Technol. (1)

B. P. Chandra and A. S. Rathore, “Classification of mechanoluminescence,” Cryst. Res. Technol.30(7), 885–896 (1995).
[Crossref]

Electrochem. Solid-State Lett. (1)

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Stress-induced mechanoluminescence in SrCaMgSi2O7:Eu,” Electrochem. Solid-State Lett.10(10), J129–J131 (2007).
[Crossref]

Ferroelectrics (1)

J. C. Zhang, W. Yang, X. Wang, and X. Yao, “Dielectric and luminescence properties of the A- and B-site doped CaTiO3:Pr3+ ceramics,” Ferroelectrics401(1), 226–232 (2010).
[Crossref]

IEEE Sens. J. (1)

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J.13(10), 3999–4004 (2013).
[Crossref]

J. Alloy. Comp. (1)

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by B site Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[Crossref]

J. Electrochem. Soc. (3)

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[Crossref]

J. Lumin. (1)

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[Crossref]

J. Visual-Japan (1)

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visual-Japan11(4), 329–335 (2008).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

P. Boutinaud, E. Pinel, and R. Mahiou, “Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis,” Opt. Mater.30(7), 1033–1038 (2008).
[Crossref]

Phys. Status Solidi A (1)

P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi A160(1), 255–263 (1997).
[Crossref]

Physica B (1)

A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011).
[Crossref]

RSC Adv. (1)

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv.4(77), 40665–40675 (2014).
[Crossref]

Other (3)

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

C. N. Xu, “Coatings,” in Encyclopedia of Smart Materials, edited by M. Schwartz (Wiley, 2002), 1, 190.

B. P. Chandra, “Mechanoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Plenum Press, 1988), p. 361.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 XRD patterns of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008).
Fig. 2
Fig. 2 Backscattered SEM images of diphase (Ba,Ca)TiO3:Pr3+,xGd3+ ceramic pellets: (a) x = 0, (b) x = 0.001, (c) x = 0.004, and (d) x = 0.008, showing coexistence of Ba-rich phase (light grains) and Ca-rich phase (dark grains).
Fig. 3
Fig. 3 (a) Photoluminescent excitation (PLE, λem = 613 nm) and (b) photoluminescent (PL, λex = 343 nm) spectra of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008).
Fig. 4
Fig. 4 Dependence of relative photoluminescent (PL) intensity on the Gd3+ concentration of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008). The inset shows the PL picture of sample with x = 0.004 (λex = 254 nm).
Fig. 5
Fig. 5 Diffuse reflectance spectra for (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008).
Fig. 6
Fig. 6 (a) Elastico-mechanoluminescent (EML) behaviors and (b) comparison among EML peak intensities of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008).
Fig. 7
Fig. 7 Elastico-mechanoluminescent (EML) spectrum of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0.004). The inset shows the EML image.
Fig. 8
Fig. 8 (a) Thermoluminescent (ThL) curves and (b) relative ThL integral intensities of (Ba,Ca)TiO3:Pr3+,xGd3+ (x = 0, 0.0005, 0.001, 0.002, 0.004, 0.006, and 0.008).
Fig. 9
Fig. 9 Proposed elastico-mechanoluminescent mechanism model for (Ba,Ca)TiO3:Pr3+,Gd3+, showing the possible trapping and de-trapping processes of electrons. CB: conduction band, VB: valence band, and CTS: charge transfer state.

Metrics