Abstract

We report high performance liquid crystal displays (LCDs), including fringe field switching (p-FFS) and in-plane switching (p-IPS), with a small average dielectric constant (ε) but positive dielectric anisotropy material. Our low ε based p-FFS and p-IPS LCDs offer several attractive properties, such as high transmittance, low operation voltage, fast response time (even at −20°C), which is particularly desirable for outdoor applications of mobile or wearable display devices, and suppressed flexoelectric effect. Combining these advantages with the inherent outstanding features, such as wide viewing angle, no grayscale inversion, negligible color shift, and pressure resistance, the low ε LC based p-FFS and p-IPS are strong contenders for next-generation mobile displays, and high resolution and high frame rate TVs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response liquid crystal for high-resolution virtual reality displays

Fangwang Gou, Haiwei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(7) 7984-7997 (2017)

High performance liquid crystals for vehicle displays

Fenglin Peng, Yuge Huang, Fangwang Gou, Minggang Hu, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Mater. Express 6(3) 717-726 (2016)

Flexoelectric in-plane switching (IPS) mode with ultra-high-transmittance, low-voltage, low-frequency, and a flicker-free image

MinSu Kim, Hyeong Gyun Ham, Han-Sol Choi, Philip J. Bos, Deng-Ke Yang, Joong Hee Lee, and Seung Hee Lee
Opt. Express 25(6) 5962-5971 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48, 03B001 (2009).
  2. Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).
  3. M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Display Technol.10(8), 635–641 (2014).
    [Crossref]
  4. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
    [Crossref]
  5. S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
    [Crossref]
  6. H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
    [Crossref]
  7. Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
    [Crossref]
  8. Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol.9(2), 74–77 (2013).
    [Crossref]
  9. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
    [Crossref]
  10. L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
    [Crossref]
  11. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem.10, 103–118 (1975).
    [Crossref]
  12. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  13. W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)63(1), 83–109 (1981).
    [Crossref]
  14. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst.8(2), 171–182 (1990).
    [Crossref]
  15. S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A42(4), 2219–2227 (1990).
    [Crossref] [PubMed]
  16. W. Maier, A. Saupe, and Z. Naturforsch, Teil A 14, 882 (1959). 15, 287 (1960).
  17. J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
    [Crossref]
  18. S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
    [Crossref]
  19. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique-incidence,” Appl. Phys. Lett.57(26), 2767–2769 (1990).
    [Crossref]
  20. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane- switching liquid crystal displays,” J. Display Technol.2(2), 114–120 (2006).
    [Crossref]
  21. C. D. Tu, C. L. Lin, J. Yan, Y. Chen, P. C. Lai, and S. T. Wu, “Driving scheme using bootstrapping method for blue-phase LCDs,” J. Display Technol.9(1), 3–6 (2013).
    [Crossref]
  22. Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).
  23. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects In Liquid Crystal Materials (Springer-Verlag, 1994).
  24. Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Display Technol.10(7), 526–539 (2014).
    [Crossref]
  25. C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
    [Crossref]
  26. R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Display Technol.2(4), 319–326 (2006).
    [Crossref]
  27. Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
    [Crossref]
  28. J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
    [Crossref]
  29. K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” Npg Asia Mater.1(1), 29–36 (2009).
    [Crossref]
  30. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
    [Crossref]

2014 (4)

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Display Technol.10(8), 635–641 (2014).
[Crossref]

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Display Technol.10(7), 526–539 (2014).
[Crossref]

2013 (3)

2012 (1)

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

2009 (3)

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[Crossref]

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48, 03B001 (2009).

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” Npg Asia Mater.1(1), 29–36 (2009).
[Crossref]

2008 (1)

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

2006 (2)

2004 (1)

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

2002 (1)

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[Crossref]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

1990 (3)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique-incidence,” Appl. Phys. Lett.57(26), 2767–2769 (1990).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst.8(2), 171–182 (1990).
[Crossref]

S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A42(4), 2219–2227 (1990).
[Crossref] [PubMed]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1981 (1)

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)63(1), 83–109 (1981).
[Crossref]

1975 (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem.10, 103–118 (1975).
[Crossref]

Ahn, B.-C.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Ahn, S. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

Chen, Y.

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

Choi, H. C.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

De Jeu, W. H.

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)63(1), 83–109 (1981).
[Crossref]

Emoto, M.

Gauza, S.

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[Crossref]

Ge, Z.

Haller, I.

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem.10, 103–118 (1975).
[Crossref]

Hisatake, Y.

Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).

Hong, Q.

Hong, S. H.

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Hsieh, H. S.

Hur, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

Igarashi, Y.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Iizuka, T.

Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).

Im, C. S.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Iwata, Y.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Jang, I. W.

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

Jo, M. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

Kang, S. W.

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

Kawamura, T.

Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).

Kim, D. H.

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

Kim, H. Y.

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[Crossref]

Kim, H.-E.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Kim, H.-G.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Kim, J. H.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Kim, J. J.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Kim, J. M.

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Kim, K. H.

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” Npg Asia Mater.1(1), 29–36 (2009).
[Crossref]

Koh, J. W.

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[Crossref]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

Kurita, T.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Kusakabe, Y.

Lai, P. C.

Lee, G. D.

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

Lee, J. H.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Lee, J. Y.

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Lee, S. H.

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[Crossref]

Lee, S. M.

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Lee, S. W.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique-incidence,” Appl. Phys. Lett.57(26), 2767–2769 (1990).
[Crossref]

Lim, Y. J.

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

Lin, C. L.

Lu, R.

Luo, Z.

Miyachi, K.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Moon, H. M.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Murata, M.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Nakakura, Y.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Nishida, Y.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Oh, C. H.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Oh, C.-H.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[Crossref]

Ohtake, T.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Park, E.-M.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Park, H. S.

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Park, J. W.

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

Peng, F.

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol.9(2), 74–77 (2013).
[Crossref]

Peng, K. H.

Rao, L.

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[Crossref]

Ryu, J. W.

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

Schadt, M.

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48, 03B001 (2009).

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

Shin, H.-W.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Someya, J.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Son, J.-S.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Song, J. K.

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” Npg Asia Mater.1(1), 29–36 (2009).
[Crossref]

Song, M. H.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Song, X.

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
[Crossref]

Sugawara, M.

Takubo, Y.

Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).

Tanaka, K.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Tanaka, Y.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Tu, C. D.

Wu, C. S.

S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A42(4), 2219–2227 (1990).
[Crossref] [PubMed]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst.8(2), 171–182 (1990).
[Crossref]

Wu, S. T.

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Display Technol.10(7), 526–539 (2014).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Display Technol.9(2), 74–77 (2013).
[Crossref]

C. D. Tu, C. L. Lin, J. Yan, Y. Chen, P. C. Lai, and S. T. Wu, “Driving scheme using bootstrapping method for blue-phase LCDs,” J. Display Technol.9(1), 3–6 (2013).
[Crossref]

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
[Crossref]

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane- switching liquid crystal displays,” J. Display Technol.2(2), 114–120 (2006).
[Crossref]

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Display Technol.2(4), 319–326 (2006).
[Crossref]

S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A42(4), 2219–2227 (1990).
[Crossref] [PubMed]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst.8(2), 171–182 (1990).
[Crossref]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Wu, T. X.

Xu, D.

Yamaguchi, T.

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
[Crossref]

Yamakawa, M.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Yamamoto, T.

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

Yan, J.

Yee, M.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Yeo, S. D.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Yoon, J.-K.

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Yoon, W. K.

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Yoshida, H.

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

Yun, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

Zhu, X.

Appl. Phys. Lett. (4)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[Crossref]

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[Crossref]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique-incidence,” Appl. Phys. Lett.57(26), 2767–2769 (1990).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[Crossref]

Crystals (1)

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals3(3), 483–503 (2013).
[Crossref]

J. Display Technol. (6)

J. Soc. Inf. Disp. (3)

C. H. Oh, H. M. Moon, W. K. Yoon, J. H. Kim, M. H. Song, J. J. Kim, J. H. Lee, J. H. Kim, C. S. Im, S. W. Lee, H. C. Choi, and S. D. Yeo, “Super-large-sized TFT-LCD (55 in.) for HDTV application,” J. Soc. Inf. Disp.12(1), 11–16 (2004).
[Crossref]

Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp.10, 1002–1019 (2014).

S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, “Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics,” J. Soc. Inf. Disp.10(2), 117–122 (2002).
[Crossref]

Jpn. J. Appl. Phys. (3)

M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys.48, 03B001 (2009).

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1), 2155–2164 (1992).
[Crossref]

S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys.53(1), 010304 (2014).
[Crossref]

Liq. Cryst. (3)

J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe‐field switching nematic liquid crystal cell,” Liq. Cryst.35(4), 407–411 (2008).
[Crossref]

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst.39(9), 1141–1148 (2012).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst.8(2), 171–182 (1990).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)63(1), 83–109 (1981).
[Crossref]

Npg Asia Mater. (1)

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” Npg Asia Mater.1(1), 29–36 (2009).
[Crossref]

Phys. Rev. A (2)

S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A42(4), 2219–2227 (1990).
[Crossref] [PubMed]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Prog. Solid State Chem. (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem.10, 103–118 (1975).
[Crossref]

Other (5)

Y. Takubo, Y. Hisatake, T. Iizuka, and T. Kawamura, “Ultra-high resolution mobile displays,” SID Symp. Dig. 64, 869–872 (2012).

W. Maier, A. Saupe, and Z. Naturforsch, Teil A 14, 882 (1959). 15, 287 (1960).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects In Liquid Crystal Materials (Springer-Verlag, 1994).

Y. Igarashi, T. Yamamoto, Y. Tanaka, J. Someya, Y. Nakakura, M. Yamakawa, Y. Nishida, and T. Kurita, “Summary of moving picture response time (MPRT) and futures,” SID Symp. Dig. 35, 1262–1265 (2004).
[Crossref]

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “The study of picture quality of OLED TV with WRGB OLEDs structure, ” SID Symp. Dig. 44, 326–329 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Temperature dependent birefringence of (a) UCF-L1 and (b) MLC-6686 at λ = 633nm. Dots are experimental data and red line is fitting curve with Eq. (1).
Fig. 2
Fig. 2 Measured decay time of (a) UCF-L1 and (b) MLC-6686. FFS cell: d = 3.5µm, w = 4µm, and l = 3µm.
Fig. 3
Fig. 3 Temperature dependent γ1/K11 of (a) UCF-L1 and (b) MLC-6686: black dots are experimental data and red lines are fittings with Eq. (4).
Fig. 4
Fig. 4 Measured and simulated VT curves for UCF-L1 and MLC-6686. FFS cell: d = 3.5µm, ω = 4µm, and l = 3µm. λ = 633 nm.
Fig. 5
Fig. 5 Simulated VT curves of MLC-6686 and UCF-L1. λ = 550 nm.
Fig. 6
Fig. 6 Simulated response time for UCF-L1 and MLC-6686.
Fig. 7
Fig. 7 Simulated VT curves for different (a) ε//, (b) ε, and (c) ε//. λ = 550 nm.
Fig. 8
Fig. 8 Simulated VT curves for different electrode structures of (a) MLC-6686 and (b) UCF-L1. λ = 550 nm.
Fig. 9
Fig. 9 LC director deformation of (a) UCF-L1, and (b) MLC-6686.
Fig. 10
Fig. 10 Simulated VT curves of p-FFS as Δε decreases from 8.0 to 0.25. λ = 550 nm and ε = 2.76.
Fig. 11
Fig. 11 Simulated VT curves of p-IPS as Δε decreases from 8.0 to 0.25. λ = 550 nm and ε = 2.76.

Tables (2)

Tables Icon

Table 1 Physical properties of two LC mixtures studied (T = 23°C, λ = 633nm and f = 1 kHz.)

Tables Icon

Table 2 Simulated gray-to-gray response time for UCF-L1 (ms).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( T ) = Δ n 0 S = Δ n 0 ( 1 T / T c ) β ,
γ 1 ~Sexp(E/ k B T),
K ii ~ S 2 ,
γ 1 / K ii ~exp(E/ k B T)/S,
P~NfC V 2 ,
C= C st (1+ C lc / C st ).

Metrics