Abstract

The technology of fabrication of gradient dielectric nanofilms with the predesigned distribution of refractive index by means of magnetron sputtering of the nanofilm components on the movable substrate, based on the prescribed motion of substrate, is presented. The theoretical prediction of giant controllable heterogeneity–induced dispersion of gradient dielectric periodical nanostructures without free carriers is verified by the experimental measurements of their transmittance in visible and near infrared spectral ranges. The unusual transmittance spectra of these structures are distinguished by strong dispersion nearby the red edge of visible range and almost constant high transmittance in the near infrared range. Method of non-destroying control of gradient optical nanolayers, using the X–ray reflectometry of their density distribution, is developed, and the possibility of formation of nanocluster structures of these layers is shown. Potential of periodical gradient all–dielectric nanostructures for flexible design and fabrication of broadband antireflection coatings with sub-wavelength thicknesses is considered.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Combined ‘moth-eye’ structured and graded index-layer anti-reflecting coating for high index glasses

Matthias Kraus, Zhaolu Diao, Klaus Weishaupt, Joachim P. Spatz, Kerstin Täschner, Hagen Bartzsch, Ralph Schmittgens, and Robert Brunner
Opt. Express 27(24) 34655-34664 (2019)

Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

Zih-Ying Yang, Yi-Hsun Chen, Bo-Huei Liao, and Kuo-Ping Chen
Opt. Mater. Express 6(2) 540-551 (2016)

a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters

Hidehiko Yoda, Kazuo Shiraishi, Yuji Hiratani, and Osamu Hanaizumi
Appl. Opt. 43(17) 3548-3554 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
    [Crossref]
  2. A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
    [Crossref]
  3. A. Alu and N. Engheta, “Dielectric sensing in epsilon – near – zero narrow waveguide,” Phys. Rev. B78(4), 045102 (2008).
    [Crossref]
  4. R. R. Willey, Practical Design and Production of Optical Thin Films, 2nd ed. (Marcel Dekker, 2002).
  5. P. W. Baymeister, Optical Coating Technology (SPIE, 2004).
  6. P. Yeh, Optical Waves in Layered Media (Wiley Series in Pure and Applied Optics, 1997).
  7. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000).
    [Crossref]
  8. O. D. Volpian and A. I. Kuzmichev, “Nanogradient optical coatings,” Russ. J. Gen. Chem.83(11), 2182–2194 (2013).
    [Crossref]
  9. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  10. A. C. Van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett.29(21), 2545–2547 (2004).
    [Crossref] [PubMed]
  11. R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
    [Crossref]
  12. R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
    [Crossref]
  13. H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
    [Crossref]
  14. N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
    [Crossref]
  15. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near – infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
    [Crossref]
  16. A. B. Shvartsburg and A. A. Maradudin, Waves in Gradient Metamaterials (WSPC, 2013).
  17. L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
    [Crossref] [PubMed]
  18. K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
    [Crossref]
  19. L. G. Parrat, “Surface studies of solids by total reflection of X – rays,” Phys. Rev.95(2), 359–369 (1954).
    [Crossref]
  20. S. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

2013 (4)

O. D. Volpian and A. I. Kuzmichev, “Nanogradient optical coatings,” Russ. J. Gen. Chem.83(11), 2182–2194 (2013).
[Crossref]

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

2012 (2)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near – infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[Crossref]

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

2010 (1)

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

2008 (1)

A. Alu and N. Engheta, “Dielectric sensing in epsilon – near – zero narrow waveguide,” Phys. Rev. B78(4), 045102 (2008).
[Crossref]

2005 (1)

L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
[Crossref] [PubMed]

2004 (2)

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

A. C. Van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett.29(21), 2545–2547 (2004).
[Crossref] [PubMed]

2003 (1)

2000 (2)

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000).
[Crossref]

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

1954 (1)

L. G. Parrat, “Surface studies of solids by total reflection of X – rays,” Phys. Rev.95(2), 359–369 (1954).
[Crossref]

Abramov, N. F.

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

Agafonov, Yu. A.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Dielectric sensing in epsilon – near – zero narrow waveguide,” Phys. Rev. B78(4), 045102 (2008).
[Crossref]

Bartzsch, H.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

Boltasseva, A.

Brett, M. J.

Bublik, V. T.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Camano, E. C.

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Cota-Araiza, L.

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Dong, L.

L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
[Crossref] [PubMed]

Dronskii, R. V.

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

Engheta, N.

A. Alu and N. Engheta, “Dielectric sensing in epsilon – near – zero narrow waveguide,” Phys. Rev. B78(4), 045102 (2008).
[Crossref]

Fitzgerald, R. M.

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

Frach, P.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

Fu, Y. H.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Goedicke, K.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

Hawkeye, M. M.

Karttunen, M.

L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
[Crossref] [PubMed]

Kennedy, S. R.

Kildishev, A. V.

Kivshar, Yu. S.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Kuzmichev, A. I.

O. D. Volpian and A. I. Kuzmichev, “Nanogradient optical coatings,” Russ. J. Gen. Chem.83(11), 2182–2194 (2013).
[Crossref]

Kuznetsov, A. I.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Lange, S.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

Lui, W.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Luk’yanchuk, B.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Machorro, R.

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Maradudin, A. A.

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

Martinu, L.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Mordkovich, V. N.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Naik, G. V.

Neshev, D.

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Ni, X.

Obod, Yu. A.

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

Pantano, C.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

Parrat, L. G.

L. G. Parrat, “Surface studies of solids by total reflection of X – rays,” Phys. Rev.95(2), 359–369 (1954).
[Crossref]

Pazhin, D. M.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Poitras, D.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000).
[Crossref]

Polanko, J.

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

Sands, T. D.

Schroeder, J. L.

Semouchkin, G. B.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

Semouchkina, E.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

Shchervachev, K. D.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Shvartsburg, A. B.

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

Sit, J. C.

Soto, G.

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Van Popta, A. C.

Villa, F.

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Volpian, O. D.

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

O. D. Volpian and A. I. Kuzmichev, “Nanogradient optical coatings,” Russ. J. Gen. Chem.83(11), 2182–2194 (2013).
[Crossref]

Voronova, M. I.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Werner, D. H.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

Yu, K. W.

L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
[Crossref] [PubMed]

Zinenko, V. I.

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed from glass,” Appl. Phys. Lett.96(23), 233503 (2010).
[Crossref]

Crystallogr. Rep. (1)

K. D. Shchervachev, M. I. Voronova, V. T. Bublik, V. N. Mordkovich, D. M. Pazhin, V. I. Zinenko, and Yu. A. Agafonov, “Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation,” Crystallogr. Rep.58(7), 1030–1036 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000).
[Crossref]

Mater. Lett. (1)

R. Machorro, E. C. Camano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of refractive index in silicon oxynitride films during deposition,” Mater. Lett.45(1), 47–50 (2000).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photon. News (1)

A. E. Miroshnichenko, A. I. Kuznetsov, W. Lui, Y. H. Fu, D. Neshev, B. Luk’yanchuk, and Yu. S. Kivshar, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photon. News23(12), 35 (2012).
[Crossref]

Phys. Rev. (1)

L. G. Parrat, “Surface studies of solids by total reflection of X – rays,” Phys. Rev.95(2), 359–369 (1954).
[Crossref]

Phys. Rev. B (1)

A. Alu and N. Engheta, “Dielectric sensing in epsilon – near – zero narrow waveguide,” Phys. Rev. B78(4), 045102 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Dong, M. Karttunen, and K. W. Yu, “Spectral representation of the effective dielectric constant of graded composites,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016613 (2005).
[Crossref] [PubMed]

Quantum Electron. (1)

N. F. Abramov, O. D. Volpian, Yu. A. Obod, and R. V. Dronskii, “Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering,” Quantum Electron.43(9), 791–794 (2013).
[Crossref]

Russ. J. Gen. Chem. (1)

O. D. Volpian and A. I. Kuzmichev, “Nanogradient optical coatings,” Russ. J. Gen. Chem.83(11), 2182–2194 (2013).
[Crossref]

Surf. Coat. Tech. (1)

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Tech.180, 616–620 (2004).
[Crossref]

Waves in Random and Complex Media (1)

R. M. Fitzgerald, A. A. Maradudin, J. Polanko, and A. B. Shvartsburg, “S-Polarized Guided Electromagnetic Waves at a Planar Interface Between Vacuum and a Graded - Index Dielectric,” Waves in Random and Complex Media23(2), 169–182 (2013).
[Crossref]

Other (5)

R. R. Willey, Practical Design and Production of Optical Thin Films, 2nd ed. (Marcel Dekker, 2002).

P. W. Baymeister, Optical Coating Technology (SPIE, 2004).

P. Yeh, Optical Waves in Layered Media (Wiley Series in Pure and Applied Optics, 1997).

A. B. Shvartsburg and A. A. Maradudin, Waves in Gradient Metamaterials (WSPC, 2013).

S. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Set-up for deposition of nanogradient coatings from mixtures of two oxides. M1 and M2 – magnetrons with rectangular targets for sputtering of two materials (e.g., Si and Ta); S – rotating substrate, which can move along the main axis (bold line); the oval racetrack zones on the magnetron targets are the sputtered areas; the arrows from the racetracks show schematically the directions of propagation of the sputtered atoms.
Fig. 2
Fig. 2 Calibration curve of the magnetron sputtering system, shown in Fig. 1 (dependence of refraction index of deposited material from SiO2 – Ta2O5 mixture against substrate position X1).
Fig. 3
Fig. 3 Profiles of normalized square of refractive index U(z) = n(z)/n0 are plotted vs the normalized thickness of gradient nanolayer z/d; curves 1 and 2 relate to the profiles, providing negative (positive) dispersion of nanolayer.
Fig. 4
Fig. 4 Distribution of refractive index n ( z ) in the periodical three layer gradient Ta2O5 – SiO2 – Ta2O5 nanocoating, period d = 140 nm.
Fig. 5
Fig. 5 Experimental (curve 1) and calculated (curve 2) transmission spectra of periodical gradient coating with refractive index profile shown in Fig. 3.
Fig. 6
Fig. 6 Dependence of experimental transmittance spectra of three layer gradient nanostructures (n0 = 2, nm = 1.5) upon the layer’s width d; curves 1 and 2 relate to the values d = 140 nm and d = 270 nm respectively.
Fig. 7
Fig. 7 Transmittance spectra of multilayered gradient nanostructures, containing the m layers with the parameters n0 = 2, nm = 1.5, d = 145 nm; curves 1, 2, 3 and 4 relate to the amount of gradient layers m = 3, 5, 7 and 11 respectively.
Fig. 8
Fig. 8 Density profile of the single layer nanogradient Ta2O5 – SiO2 – Ta2O5 coating, sputtered on the quartz substrate.
Fig. 9
Fig. 9 Vibration spectrum of nanoclusters (SiO2)3 in the infrared range; the intensity in the arbitrary units is plotted vs the frequency given in cm–1.
Fig. 10
Fig. 10 Structure of the nanoclusters (SiO2)3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ( z ) = ( 1 + z L 1 z 2 L 2 2 ) 1
L 1 = d 4 ( n 0 n m 1 ) 1 , L 2 = d 2 ( n 0 n m 1 ) 1 2 .

Metrics