A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref]
[PubMed]
M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn. 119(1386), 105–109 (2011).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[Crossref]
[PubMed]
J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface 18, 42–45 (2009).
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref]
[PubMed]
P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]
D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin. 91(1-2), 59–65 (2000).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin. 81(4), 293–300 (1999).
[Crossref]
S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81(3), 649–654 (1998).
[Crossref]
H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72-74, 287–289 (1997).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids 57(4), 437–441 (1996).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]
L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B 8(3), 955–973 (1973).
[Crossref]
G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48(1), 217–222 (1968).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn. 119(1386), 105–109 (2011).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin. 81(4), 293–300 (1999).
[Crossref]
V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids 57(4), 437–441 (1996).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48(1), 217–222 (1968).
[Crossref]
G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48(1), 217–222 (1968).
[Crossref]
L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81(3), 649–654 (1998).
[Crossref]
L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]
V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids 57(4), 437–441 (1996).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids 57(4), 437–441 (1996).
[Crossref]
M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[Crossref]
Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B 8(3), 955–973 (1973).
[Crossref]
J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface 18, 42–45 (2009).
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin. 91(1-2), 59–65 (2000).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72-74, 287–289 (1997).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn. 119(1386), 105–109 (2011).
[Crossref]
S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81(3), 649–654 (1998).
[Crossref]
L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin. 81(4), 293–300 (1999).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B 8(3), 955–973 (1973).
[Crossref]
G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B 8(3), 955–973 (1973).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin. 91(1-2), 59–65 (2000).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn. 119(1386), 105–109 (2011).
[Crossref]
H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72-74, 287–289 (1997).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin. 91(1-2), 59–65 (2000).
[Crossref]
S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifuncitonal Bi-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]
J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 042602 (2011).
[Crossref]
J. Kim, H. Kang, W. Kim, J. Kim, J. Choi, H. Park, G. Kim, T. Kim, Y. Hwang, S. Mho, M. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]
J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface 18, 42–45 (2009).
S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81(3), 649–654 (1998).
[Crossref]
H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn. 104(1208), 322–326 (1996).
[Crossref]
M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn. 119(1386), 105–109 (2011).
[Crossref]
G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys. 48(1), 217–222 (1968).
[Crossref]
L. Shea, R. Datta, and J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]
P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]
H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72-74, 287–289 (1997).
[Crossref]
D. Jia, J. Zhu, and B. Wu, “Improvement of persistent phosphorescence of Ca0.9Sr0.1S: Bi3+ by codoping Tm3+,” J. Lumin. 91(1-2), 59–65 (2000).
[Crossref]
A. Srivastava and W. Beers, “On the impurity trapped exciton luminescence in La2Zr2O7: Bi3+,” J. Lumin. 81(4), 293–300 (1999).
[Crossref]
M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[Crossref]
M. Chirila, K. Stevens, H. Murphy, and N. Giles, “Photoluminescence study of cadmium tungstate crystals,” J. Phys. Chem. Solids 61(5), 675–681 (2000).
[Crossref]
V. Dotsenko, I. Berezovskaya, and N. Efryushina, “Photoionization and luminescence properties of Bi3+ in In1-xLuxBO3 solid solutions,” J. Phys. Chem. Solids 57(4), 437–441 (1996).
[Crossref]
T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]
Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]
Y. Lin, C. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys. 82(3), 860–863 (2003).
[Crossref]
X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref]
[PubMed]
M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[Crossref]
[PubMed]
A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref]
[PubMed]
G. van Gorkom, J. Henning, and R. van Stapele, “Optical spectra of Cr3+ pairs in the spinel ZnGa2O4,” Phys. Rev. B 8(3), 955–973 (1973).
[Crossref]
H. Mizoguchi, H. Kawazoe, H. Hosono, and S. Fujitsu, “Charge transfer band observed in bismuth mixed-valence oxides, Bi1-xYxO1.5+δ (x = 0.3),” Solid State Commun. 104(11), 705–708 (1997).
[Crossref]
G. Blasse, C. de Mello Donega, I. Berezovskaya, and V. Dotsenko, “The luminescence of bismuth (III) in indium orthoborate,” Solid State Commun. 91(1), 29–31 (1994).
[Crossref]
A. Roda, “The discovery of luminescence: ‘The Bolognian stone’,” (International Society for Bioluminescence and Chemiluminescence, 1998). http://www.isbc.unibo.it/Files/10_SE_BoStone.htm .