Abstract

Spectroscopic and laser parameters of Er-doped Gd3Ga3Al2O12 crystal (Er:GGAG) are presented in the temperature range 80 - 340 K. The significant influence of crystal temperature on resonantly diode pumped Er:GGAG laser, emitting at 1650.6 nm, was observed. The maximal reached output peak power was 2.8 W with corresponding slope efficiency up to 54 % at 80 K.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, vol. 89 of Topics in Applied Physics (Springer-Verlag, 2003).
  2. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
    [Crossref]
  3. Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
    [Crossref]
  4. J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.
  5. Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
    [Crossref]
  6. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH Verlag GmbH, 2008).
  7. M. J. Weber, ed., Handbook of Optical Materials (CRC Press, 2003).
  8. R. Švejkar, J. Šulc, M. Němec, P. Boháčaek, H. Jelínková, B. Trunda, L. Havlák, M. Nikl, and K. Jurek, “Line-tunable Er:GGAG laser,” Opt. Lett. 43(14), 3309–3312 (2018).
    [Crossref]
  9. H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
    [Crossref]
  10. D. Chen, T. Rose, and S. Beck, “High performance 1645–nm Er:YAG laser,” in Advanced Solid-State Photonics, (OSA, 2008), OSA Technical Digest, p. WE46.
  11. K. Spariosu, M. Birnbaum, and B. Viana, “Er3+:Y3Al5O12 laser dynamics: effect of upconversion,” J. Opt. Soc. Am. B 11(5), 894–900 (1994).
    [Crossref]
  12. W. Clarkson, D. Shen, and J. Sahu, “High-power fiber-bulk hybrid lasers,” in Solid State Lasers XV: Technology and Devices, vol. 6100 of SPIE (2006), p. 61000A.
  13. S. Setzler, J. Konves, and E. Chicklis, “Resonantly diode-pumped eyesafe Er:YAG lasers,” in Solid State Lasers XIV: Technology and Devices, vol. 5707 of SPIE (2005), pp. 117–127.
  14. T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  15. D. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  16. T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  17. N. Ter-Gabrielyan, V. Fromzel, L. D. Merkle, and M. Dubinskii, “Resonant in-band pumping of cryo-cooled Er3+:YAG laser at 1532, 1534 and 1546 nm,” Opt. Mater. Express 1(2), 223–233 (2011).
    [Crossref]
  18. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic and laser properties of resonantly (in-band) pumped Er:YVO4 and Er:GdVO4 crystals: a comparative study,” Opt. Mater. Express 2(8), 1040–1049 (2012).
    [Crossref]
  19. M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
    [Crossref]
  20. M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.
  21. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University, 2000).

2018 (2)

R. Švejkar, J. Šulc, M. Němec, P. Boháčaek, H. Jelínková, B. Trunda, L. Havlák, M. Nikl, and K. Jurek, “Line-tunable Er:GGAG laser,” Opt. Lett. 43(14), 3309–3312 (2018).
[Crossref]

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

2014 (1)

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2009 (1)

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

2008 (1)

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

2007 (1)

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2005 (2)

D. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

1994 (1)

Aggarwal, R.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Bartram, R. H.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University, 2000).

Beck, S.

D. Chen, T. Rose, and S. Beck, “High performance 1645–nm Er:YAG laser,” in Advanced Solid-State Photonics, (OSA, 2008), OSA Technical Digest, p. WE46.

Bien, C.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Birnbaum, M.

Bohácaek, P.

Brown, D.

D. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Chen, D.

D. Chen, T. Rose, and S. Beck, “High performance 1645–nm Er:YAG laser,” in Advanced Solid-State Photonics, (OSA, 2008), OSA Technical Digest, p. WE46.

Chicklis, E.

S. Setzler, J. Konves, and E. Chicklis, “Resonantly diode-pumped eyesafe Er:YAG lasers,” in Solid State Lasers XIV: Technology and Devices, vol. 5707 of SPIE (2005), pp. 117–127.

Clarkson, W.

W. Clarkson, D. Shen, and J. Sahu, “High-power fiber-bulk hybrid lasers,” in Solid State Lasers XV: Technology and Devices, vol. 6100 of SPIE (2006), p. 61000A.

Dicninig, A.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Dubinskii, M.

Eichler, H. J.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Fan, T.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fromzel, V.

Fu, P.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Havlák, L.

Henderson, B.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University, 2000).

Hlinomaz, K.

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

Huber, G.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Hubka, Z.

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

Jelinkova, H.

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

Jelínková, H.

R. Švejkar, J. Šulc, M. Němec, P. Boháčaek, H. Jelínková, B. Trunda, L. Havlák, M. Nikl, and K. Jurek, “Line-tunable Er:GGAG laser,” Opt. Lett. 43(14), 3309–3312 (2018).
[Crossref]

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

Jiang, Y.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Jurek, K.

Konves, J.

S. Setzler, J. Konves, and E. Chicklis, “Resonantly diode-pumped eyesafe Er:YAG lasers,” in Solid State Lasers XIV: Technology and Devices, vol. 5707 of SPIE (2005), pp. 117–127.

Koranda, P.

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

Li, J.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Liu, B.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Lukasiewicz, T.

Ma, E.

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Merkle, L. D.

Nemec, M.

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

R. Švejkar, J. Šulc, M. Němec, P. Boháčaek, H. Jelínková, B. Trunda, L. Havlák, M. Nikl, and K. Jurek, “Line-tunable Er:GGAG laser,” Opt. Lett. 43(14), 3309–3312 (2018).
[Crossref]

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

Nikl, M.

Ochoa, J.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH Verlag GmbH, 2008).

Pašta, J.

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

Ripin, D.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Rose, T.

D. Chen, T. Rose, and S. Beck, “High performance 1645–nm Er:YAG laser,” in Advanced Solid-State Photonics, (OSA, 2008), OSA Technical Digest, p. WE46.

Ryba-Romanowski, W.

Sahu, J.

W. Clarkson, D. Shen, and J. Sahu, “High-power fiber-bulk hybrid lasers,” in Solid State Lasers XV: Technology and Devices, vol. 6100 of SPIE (2006), p. 61000A.

Setzler, S.

S. Setzler, J. Konves, and E. Chicklis, “Resonantly diode-pumped eyesafe Er:YAG lasers,” in Solid State Lasers XIV: Technology and Devices, vol. 5707 of SPIE (2005), pp. 117–127.

Shen, D.

W. Clarkson, D. Shen, and J. Sahu, “High-power fiber-bulk hybrid lasers,” in Solid State Lasers XV: Technology and Devices, vol. 6100 of SPIE (2006), p. 61000A.

Spariosu, K.

Spitzberg, J.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sulc, J.

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

Šulc, J.

R. Švejkar, J. Šulc, M. Němec, P. Boháčaek, H. Jelínková, B. Trunda, L. Havlák, M. Nikl, and K. Jurek, “Line-tunable Er:GGAG laser,” Opt. Lett. 43(14), 3309–3312 (2018).
[Crossref]

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

Svejkar, R.

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

Švejkar, R.

Taeuber, U.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Ter-Gabrielyan, N.

Tilleman, M.

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Trunda, B.

Tu, C.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Viana, B.

Wang, J.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Wang, Y.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Wu, X.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Xu, J.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Yan, X.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

You, Z.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Zhang, Z.

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

Zhu, Z.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 µm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref]

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Appl. Phys. A (1)

H. Jelínková, J. Pašta, M. Němec, J. Šulc, and P. Koranda, “Near- and mid-infrared laser radiation interaction with eye tissue,” Appl. Phys. A 92(4), 975–980 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Fan, D. Ripin, R. Aggarwal, J. Ochoa, C. Bien, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

J. Appl. Phys. (1)

T. Fan, D. Ripin, R. Aggarwal, and J. Ochoa, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300k temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Y. Wang, Z. You, J. Li, Z. Zhu, E. Ma, and C. Tu, “Spectroscopic investigations of highly doped Er3+ : GGG and Er3+/Pr3+ : GGG crystals,” J. Phys. D: Appl. Phys. 42(21), 215406 (2009).
[Crossref]

Laser Phys. (1)

M. Nemec, J. Sulc, R. Svejkar, and H. Jelinkova, “Temperature influence on Er:YAlO3 spectroscopy and diode-pumped laser properties,” Laser Phys. 28(10), 105801 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Other (9)

M. Nemec, J. Sulc, Z. Hubka, K. Hlinomaz, and H. Jelinkova, “Er:YAG crystal temperature influence on laser output characteristics,” in Solid State Lasers XXVI: Technology and Devices, vol. 10082 of SPIE (2017), p. 100821T.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge University, 2000).

J. Wang, Z. Zhang, J. Xu, J. Xu, P. Fu, B. Liu, U. Taeuber, H. J. Eichler, A. Dicninig, G. Huber, X. Yan, X. Wu, and Y. Jiang, “Spectroscopic properties and 3- µm lasing of Er3+:YVO4 crystals,” in High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers II, vol. 3549 of SPIE (1998), p. 4.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH Verlag GmbH, 2008).

M. J. Weber, ed., Handbook of Optical Materials (CRC Press, 2003).

D. Chen, T. Rose, and S. Beck, “High performance 1645–nm Er:YAG laser,” in Advanced Solid-State Photonics, (OSA, 2008), OSA Technical Digest, p. WE46.

W. Clarkson, D. Shen, and J. Sahu, “High-power fiber-bulk hybrid lasers,” in Solid State Lasers XV: Technology and Devices, vol. 6100 of SPIE (2006), p. 61000A.

S. Setzler, J. Konves, and E. Chicklis, “Resonantly diode-pumped eyesafe Er:YAG lasers,” in Solid State Lasers XIV: Technology and Devices, vol. 5707 of SPIE (2005), pp. 117–127.

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, vol. 89 of Topics in Applied Physics (Springer-Verlag, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Scheme of resonantly pumped Er:GGAG laser - hemispherical resonator formed by the spherical pumping mirror (PM) placed in vacuum chamber of liquid nitrogen cooled cryostat and output coupler (OC) in the air; (b) Photo of Er:GGAG crystal with Er$^{3+}$ doping concentrations 0.53 % (length 9.5 mm).
Fig. 2.
Fig. 2. (a) Absorption spectra of the Er:GGAG crystal for selected temperatures: 80 K, 180 K, 300 K, and 340 K, inset graph - spectral overlap of the absorption peak (sample temperature 80 K) and 1461 nm emission line of the pump diode; (b) Fluorescence spectra of the Er:GGAG laser crystal for selected temperatures of 80 K, 200 K, 300 K, and 350 K, inset graph - dependence of the fluorescence decay time on temperature.
Fig. 3.
Fig. 3. (a) Output peak power dependence of the Er:GGAG laser pumped by 1461 nm fibre-coupled diode on absorbed pumping peak power for various crystal temperatures; (b) Dependence of slope efficiency and laser threshold on crystal temperature.
Fig. 4.
Fig. 4. (a) Spectrum of emitted wavelength by the Er:GGAG laser; (b) Beam laser spatial structure for 80 K crystal temperature and 2.8 W output peak power.

Metrics