Abstract

Three kinds of point defects, SiE’ center (≡ Si·), unrelaxed oxygen deficiency center (ODC (II)) and non-bridging oxygen hole center (≡ Si−O·, NBOHC), have been generated in hydroxyl fused silica by ultrashort pulsed laser irradiation. Hydroxyl is proved to be a decisive component for defect producing: NBOHC originates directly from hydroxyl; Hydroxyl facilitates the generation of SiE’ in an indirect way; No obvious relevance could be built between ODC (II) and hydroxyl. By improving hydroxyl content to 1000 ppm, NBOHC becomes the dominant defect species and its red luminescence is hence discernible to naked eye. Intended for application, high hydroxyl fused silica is screened out as the desired candidate, and NBOHC becomes the final interested defect. NBOHC’s intrinsic features of lifetime and temperature stability and extrinsic properties of laser condition dependence are specifically and systematically investigated. Prospective use of defect manipulation and fabrication in one-chip exploited for anti-counterfeiting and lab-on-a-chip is also discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between 193nm absorption and photoluminescence-related defects for fused silica materials

Jiangning Zhou and Bincheng Li
Opt. Mater. Express 8(4) 775-784 (2018)

Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+

C. G. Carlson, K. E. Keister, P. D. Dragic, A. Croteau, and J. G. Eden
J. Opt. Soc. Am. B 27(10) 2087-2094 (2010)

Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica

M. Lancry, B. Poumellec, R. Desmarchelier, and B. Bourguignon
Opt. Mater. Express 2(12) 1809-1821 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
    [Crossref]
  2. C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886–4892 (1969).
    [Crossref]
  3. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46(24), 6092–6095 (2007).
    [Crossref]
  4. M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
    [Crossref]
  5. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
    [Crossref]
  6. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn 99(1154), 923–942 (1991).
    [Crossref]
  7. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  8. L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
    [Crossref]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  10. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref]
  11. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
    [Crossref]
  12. H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
    [Crossref]
  13. B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
    [Crossref]
  14. Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
    [Crossref]
  15. S. Liu, S. P. Zheng, K. Yang, and D. P. Chen, “Radiation-induced change of OH content in Yb-doped silica glass,” Chin. Opt. Lett. 13(6), 060602 (2015).
    [Crossref]
  16. J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
    [Crossref]
  17. H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
    [Crossref]
  18. H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
    [Crossref]
  19. S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
    [Crossref]
  20. D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
    [Crossref]
  21. S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
    [Crossref]
  22. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
    [Crossref]
  23. L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
    [Crossref]
  24. F. Messina and M. Cannas, “Photochemical generation of E’ centre from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation,” J. Phys.: Condens. Matter 18(43), 9967–9973 (2006).
    [Crossref]
  25. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
    [Crossref]
  26. F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
    [Crossref]
  27. P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).
  28. A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
    [Crossref]

2019 (1)

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

2015 (1)

2014 (1)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

2013 (1)

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

2011 (1)

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

2007 (2)

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46(24), 6092–6095 (2007).
[Crossref]

2006 (2)

F. Messina and M. Cannas, “Photochemical generation of E’ centre from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation,” J. Phys.: Condens. Matter 18(43), 9967–9973 (2006).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

2004 (1)

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

2003 (1)

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

2002 (2)

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
[Crossref]

2001 (3)

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
[Crossref]

2000 (2)

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

1999 (1)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

1996 (1)

1994 (1)

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

1991 (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn 99(1154), 923–942 (1991).
[Crossref]

1989 (1)

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[Crossref]

1988 (1)

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

1982 (1)

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

1973 (1)

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

1969 (1)

C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886–4892 (1969).
[Crossref]

Abe, Y.

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Agnello, S.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Alessi, A.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Arai, K.

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Avci, P.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Beresna, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

Bernasconi, M.

D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
[Crossref]

Boero, M.

D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
[Crossref]

Boizot, B.

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Booth, G. M.

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

Boscaino, R.

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Boukenter, A.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Cannas, M.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

F. Messina and M. Cannas, “Photochemical generation of E’ centre from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation,” J. Phys.: Condens. Matter 18(43), 9967–9973 (2006).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Chen, D. P.

Clausnitzer, T.

Davis, K. M.

De Michele, V.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Demos, S. G.

Donadio, D.

D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
[Crossref]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[Crossref]

Fahr, S.

Francesca, D. D.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

Gelardi, F. M.

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Giacomazzi, L.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Girard, S.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Griscom, D. L.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn 99(1154), 923–942 (1991).
[Crossref]

Gupta, A.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Gwyn, C. W.

C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886–4892 (1969).
[Crossref]

Hamblin, M. R.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Hibara, A.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Hirano, M.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

Hirao, K.

Hosono, H.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Ikuta, Y.

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

Imagawa, H.

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Imai, H.

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Juodkazis, S.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Kajihara, K.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

Kaneko, R.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Kawamoto, Y.

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

Kawashima, H.

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

Kazansky, P. G.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

Kikugawa, S.

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

Kim, H.-B.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Kitamori, T.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Kley, E.-B.

Kozlowski, M. R.

Lee, M. L.

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

Leone, M.

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

Liu, S.

Makishima, A.

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

Martin-Samos, L.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Matsuo, S.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Maurer, R. D.

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

Messina, F.

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

F. Messina and M. Cannas, “Photochemical generation of E’ centre from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation,” J. Phys.: Condens. Matter 18(43), 9967–9973 (2006).
[Crossref]

Misawa, H.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Miura, K.

Miwa, M.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Morana, A.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Nakao, M.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Nishii, J.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

Ooi, T.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Ouerdane, Y.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Paillet, P.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Pam, N.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Pam, Z.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Peaden, P. A.

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

Qiu, J. B.

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

Reghioua, I.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Richard, N.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Robin, T.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Rothschild, M.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[Crossref]

Sadasivam, M.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Saito, T.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[Crossref]

Skuja, L.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

Staggs, M.

Sugimoto, N.

Sun, H.-B.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Suzuki, J.

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

Tanaka, S.

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

Tokeshi, M.

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Tünnermann, A.

Uchino, T.

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

Vecchio, D.

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Watanabe, M.

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

Winkler, B.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Wright, B. W.

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

Yamaji, M.

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

Yang, K.

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

Zheng, S. P.

Anal. Chem. (1)

A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 6170–6176 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, M. Miwa, and R. Kaneko, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Appl. Phys. Lett. 74(26), 3957–3959 (1999).
[Crossref]

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55(13), 1276–1278 (1989).
[Crossref]

Chin. Opt. Lett. (1)

Chromatographia (1)

B. W. Wright, P. A. Peaden, M. L. Lee, and G. M. Booth, “Determination of surface hydroxyl concentration on glass and fused silica capillary columns,” Chromatographia 15(9), 584–586 (1982).
[Crossref]

J. Appl. Phys. (1)

C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886–4892 (1969).
[Crossref]

J. Ceram. Soc. Jpn (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn 99(1154), 923–942 (1991).
[Crossref]

J. Non-Cryst. Solids (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

J. Phys. Chem. B (1)

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[Crossref]

J. Phys. Chem. C (1)

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

J. Phys.: Condens. Matter (1)

F. Messina and M. Cannas, “Photochemical generation of E’ centre from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation,” J. Phys.: Condens. Matter 18(43), 9967–9973 (2006).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

Y. Ikuta, S. Kikugawa, M. Hirano, and H. Hosono, “Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(6), 2891–2895 (2000).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (3)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, “Competitive relaxation processes of oxygen deficient centers in silica,” Phys. Rev. B 67(3), 033202 (2003).
[Crossref]

H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe, “Two types of oxygen deficient centers in synthetic silica glass,” Phys. Rev. B 38(17), 12772–12775 (1988).
[Crossref]

Phys. Rev. Lett. (2)

D. Donadio, M. Bernasconi, and M. Boero, “Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica,” Phys. Rev. Lett. 87(19), 195504 (2001).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref]

Proc. IEEE (1)

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

Proc. SPIE (4)

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

J. B. Qiu, A. Makishima, T. Uchino, and Y. Kawamoto, “Ultrashort-pulse-laser-induced fine structure in synthetic fused silicas,” Proc. SPIE 5350, 281–288 (2004).
[Crossref]

H. Kawashima, M. Yamaji, J. Suzuki, and S. Tanaka, “Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram,” Proc. SPIE 7925, 79251C (2011).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155 (2001).
[Crossref]

Rev. Phys. (1)

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, and Y. Ouerdane, “Overview of radiation induced point defects in silica-based optical fibers,”,” Rev. Phys. 4, 100032 (2019).
[Crossref]

Semin. Cutan. Med. Surg. (1)

P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” Semin. Cutan. Med. Surg. 32(1), 41–52 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. FTIR spectra of high-OH (A), mid-OH (B) and low-OH (C) fused silica. The inset table illustrated the OH content of all the three samples.
Fig. 2.
Fig. 2. PL-PLE mapping of laser induced (a) ODC (II) and (b) NBOHC in high-OH (A), mid-OH (B) and low-OH (C) fused silica.
Fig. 3.
Fig. 3. Absorption spectra of laser irradiated high-OH (A), mid-OH (B), low-OH (C) and pre-irradiated high-OH (p-A) fused silica. The inset is enlarged spectra indicated by the black dashed box.
Fig. 4.
Fig. 4. NBOHC’s intrinsic properties of (a) lifetime and (b) thermal endurance, and the dependence of NBOHC’s PL intensity on (c) pulse duration and (d) laser power.
Fig. 5.
Fig. 5. High-OH fused silica with a barcode fabricated in it (a) under sunlight and (b) UV-254 nm exposure.
Fig. 6.
Fig. 6. (a) A schematic lab-on-chip system and (b) a fabricated arrays of micron-sized defects of NBOHC featuring red PL based on high-OH fused silica.

Metrics